Home
Class 12
MATHS
The value of 2 sin^2 theta + k cos^2 2 t...

The value of `2 sin^2 theta + k cos^2 2 theta =1 ` , then k is equal to :

A

`cos theta + cos alpha`

B

independent of `theta`

C

independent of `alpha`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sin^2 \theta + k \cos^2 2\theta = 1 \) for \( k \), we can follow these steps: ### Step 1: Substitute a specific angle Let's substitute \( \theta = \frac{\pi}{4} \) into the equation. This angle is chosen because \( \sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \). ### Step 2: Calculate \( \sin^2 \theta \) and \( \cos^2 2\theta \) Using \( \theta = \frac{\pi}{4} \): - \( \sin^2 \frac{\pi}{4} = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \) - Now, calculate \( \cos 2\theta \): \[ \cos 2\theta = \cos \left(2 \cdot \frac{\pi}{4}\right) = \cos \frac{\pi}{2} = 0 \] - Therefore, \( \cos^2 2\theta = 0^2 = 0 \). ### Step 3: Substitute values into the equation Now substitute these values back into the original equation: \[ 2 \sin^2 \frac{\pi}{4} + k \cos^2 2\frac{\pi}{4} = 1 \] This simplifies to: \[ 2 \cdot \frac{1}{2} + k \cdot 0 = 1 \] \[ 1 + 0 = 1 \] ### Step 4: Analyze the equation The equation \( 1 = 1 \) holds true for any value of \( k \). This indicates that \( k \) is independent of \( \theta \). ### Step 5: Conclusion Since the equation holds true regardless of the value of \( k \), we conclude that \( k \) can take any value. However, we can express this as \( k \) being independent of \( \theta \). Thus, the value of \( k \) is independent of \( \theta \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

If the sum of all values of theta , 0 le theta le 2 pi satisfying the equation (8 cos 4 theta - 3) ( cot theta + tan theta -2 ) ( cot theta + tan theta + 2) = 12 is k pi , then k is equal to :

If sintheta+sin^(2)theta = 1 then cos^(2)theta+cos^(4)theta is equal to :

Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

If sec^2 theta (1 + sin theta) (1 — sin theta) = k , then find the value of k.

If sin theta+sin2theta+sin3theta=sin alpha and cos theta+cos 2theta+cos3theta=cos alpha , then theta is equal to

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)