Home
Class 12
MATHS
If sin^6 theta + cos^6 theta + k sin^2 2...

If `sin^6 theta + cos^6 theta + k sin^2 2theta`=1 , then k is equal to :

A

1/2

B

1/4

C

4

D

3/4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^6 \theta + \cos^6 \theta + k \sin^2 2\theta = 1 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sin^6 \theta + \cos^6 \theta + k \sin^2 2\theta = 1 \] ### Step 2: Use the identity for \( \sin^6 \theta + \cos^6 \theta \) We can use the identity for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Let \( A = \sin^2 \theta \) and \( B = \cos^2 \theta \). Thus, \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)((\sin^2 \theta)^2 - \sin^2 \theta \cos^2 \theta + (\cos^2 \theta)^2) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \sin^6 \theta + \cos^6 \theta = 1 \cdot \left( \sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta \right) \] ### Step 3: Simplify \( \sin^4 \theta + \cos^4 \theta \) Using the identity \( \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \): \[ \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Thus, \[ \sin^6 \theta + \cos^6 \theta = 1 - 2\sin^2 \theta \cos^2 \theta - \sin^2 \theta \cos^2 \theta = 1 - 3\sin^2 \theta \cos^2 \theta \] ### Step 4: Substitute back into the equation Substituting this back into the original equation: \[ 1 - 3\sin^2 \theta \cos^2 \theta + k \sin^2 2\theta = 1 \] ### Step 5: Use the identity for \( \sin^2 2\theta \) Recall that: \[ \sin^2 2\theta = 4\sin^2 \theta \cos^2 \theta \] Substituting this into the equation gives: \[ 1 - 3\sin^2 \theta \cos^2 \theta + k(4\sin^2 \theta \cos^2 \theta) = 1 \] ### Step 6: Simplify the equation Cancelling \( 1 \) from both sides: \[ -3\sin^2 \theta \cos^2 \theta + 4k\sin^2 \theta \cos^2 \theta = 0 \] Factoring out \( \sin^2 \theta \cos^2 \theta \): \[ \sin^2 \theta \cos^2 \theta (-3 + 4k) = 0 \] ### Step 7: Solve for \( k \) Since \( \sin^2 \theta \cos^2 \theta \) cannot be zero for all \( \theta \), we have: \[ -3 + 4k = 0 \implies 4k = 3 \implies k = \frac{3}{4} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{\frac{3}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The value of 2 sin^2 theta + k cos^2 2 theta =1 , then k is equal to :

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

sin^6theta+cos^6theta\ \ for all theta

If sec^2 theta (1 + sin theta) (1 — sin theta) = k , then find the value of k.

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

Solve sin 6 theta=sin 4 theta-sin 2 theta .