Home
Class 12
MATHS
If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+c...

If `(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2)` and `x in (pi,2pi)` then 'a' is equal to :

A

`(pi)/4`

B

`(pi)/2`

C

`(pi)/3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\cot(a+\frac{x}{2}), \] where \( x \) is in the interval \( ( \pi, 2\pi ) \), we will follow these steps: ### Step 1: Simplify the left-hand side We start by rewriting \( \sqrt{1+\cos x} \) and \( \sqrt{1-\cos x} \) using trigonometric identities. Using the half-angle identities: \[ \sqrt{1+\cos x} = \sqrt{2\cos^2\left(\frac{x}{2}\right)} = \sqrt{2} \cos\left(\frac{x}{2}\right), \] \[ \sqrt{1-\cos x} = \sqrt{2\sin^2\left(\frac{x}{2}\right)} = \sqrt{2} \sin\left(\frac{x}{2}\right). \] ### Step 2: Substitute into the equation Now we substitute these into the left-hand side: \[ \frac{\sqrt{2} \cos\left(\frac{x}{2}\right) + \sqrt{2} \sin\left(\frac{x}{2}\right)}{\sqrt{2} \cos\left(\frac{x}{2}\right) - \sqrt{2} \sin\left(\frac{x}{2}\right)}. \] ### Step 3: Factor out \(\sqrt{2}\) Factoring out \(\sqrt{2}\) from both the numerator and the denominator: \[ = \frac{\sqrt{2} \left( \cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right) \right)}{\sqrt{2} \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)} = \frac{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}. \] ### Step 4: Rewrite in terms of cotangent Now, we can rewrite this as: \[ = \frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)}. \] Using the identity for the tangent of a sum: \[ \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)}. \] ### Step 5: Set the equation Now we have: \[ \cot\left(\frac{\pi}{4} + \frac{x}{2}\right) = \cot(a + \frac{x}{2}). \] ### Step 6: Compare angles From the equation above, we can compare the angles: \[ a + \frac{x}{2} = \frac{\pi}{4} + \frac{x}{2}. \] ### Step 7: Solve for \( a \) Subtracting \(\frac{x}{2}\) from both sides gives: \[ a = \frac{\pi}{4}. \] Thus, the value of \( a \) is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

intcosx/sqrt(1+cosx)dx

If piltxlt2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(x/2+pi/4)dot

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

If pi < x < 2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))="cot(x/2+pi/4)dot

Prove that: tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2,\ if\ pi < x <\3pi/2

If the function f(x)=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx)) If the value of f(pi/3)=a+bsqrt(c) then a+b+c=

intsinx/sqrt (1+cosx)dx

If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2) then y' is equal to