Home
Class 12
MATHS
If sec theta + tan theta = m, show that...

If `sec theta + tan theta = m, ` show that ` ((m^(2) -1))/((m^(2) +1)) = sin theta . `

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( \sec \theta + \tan \theta = m \), then \[ \frac{m^2 - 1}{m^2 + 1} = \sin \theta, \] we will start from the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sec \theta + \tan \theta = m \] 2. **Square both sides:** \[ (\sec \theta + \tan \theta)^2 = m^2 \] Expanding the left side using the identity \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ \sec^2 \theta + 2 \sec \theta \tan \theta + \tan^2 \theta = m^2 \] 3. **Use the Pythagorean identity:** We know that: \[ \sec^2 \theta - \tan^2 \theta = 1 \] Therefore, we can express \( \sec^2 \theta + \tan^2 \theta \) as: \[ \sec^2 \theta + \tan^2 \theta = 1 + 2 \tan^2 \theta \] 4. **Substituting back:** Substitute \( \sec^2 \theta + \tan^2 \theta \) into the equation: \[ 1 + 2 \tan^2 \theta + 2 \sec \theta \tan \theta = m^2 \] 5. **Rearranging:** Rearranging gives: \[ 2 \tan^2 \theta + 2 \sec \theta \tan \theta = m^2 - 1 \] 6. **Factor out 2:** \[ 2(\tan^2 \theta + \sec \theta \tan \theta) = m^2 - 1 \] 7. **Now consider \( m^2 + 1 \):** \[ m^2 + 1 = (\sec^2 \theta + \tan^2 \theta) + 2 \sec \theta \tan \theta + 1 \] Using the identity again, we have: \[ 1 + 2 \sec \theta \tan \theta + 1 = 2 + 2 \sec \theta \tan \theta \] Thus, \[ m^2 + 1 = 2(\sec \theta \tan \theta + 1) \] 8. **Now we can write the LHS:** \[ \frac{m^2 - 1}{m^2 + 1} = \frac{2(\tan^2 \theta + \sec \theta \tan \theta)}{2(\sec \theta \tan \theta + 1)} = \frac{\tan^2 \theta + \sec \theta \tan \theta}{\sec \theta \tan \theta + 1} \] 9. **Convert to sine:** We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] Therefore, \[ \frac{\tan^2 \theta + \sec \theta \tan \theta}{\sec \theta \tan \theta + 1} = \frac{\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta} + 1} \] 10. **Simplifying gives:** After simplification, we find that: \[ = \sin \theta \] Thus, we have shown that: \[ \frac{m^2 - 1}{m^2 + 1} = \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If cos ec theta - sin theta = m and sec theta - cos theta = n, then show that (m ^(2) n ) ^(2//3) + (mn ^(2)) ^( 2//3) = 1.

If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (theta + alpha ) + (n + 1) tan alpha = 0 .

If sec theta+tan theta=(1)/(2) The value of sec theta=

If sec theta+tan theta=(1)/(2) The value of tan theta =

If sin theta+ cos theta = p and sec theta + cosec theta = q ; show that q(p^2-1) = 2p

Prove that : (sin theta + sec theta) ^(2) + (cos theta + cosec theta) ^(2) = (1 + sec theta cosec theta) ^(2).

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If m tan (theta - 30^(@))= n tan (theta + 120^(@)), show that cos 2 theta = (m +n)/(2 (m -n)).

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

Prove that cos theta (tan theta +2) (2tan theta +1) = 2 sec theta + 5 sin theta