Home
Class 12
MATHS
Statement -1 : sin 3 le sin 1 le sin2 ...

Statement -1 : `sin 3 le sin 1 le sin2`
Statement-2 : `sinx ` is positive in the first and second quadrants .

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the two statements provided: **Statement 1:** \( \sin(3) < \sin(1) < \sin(2) \) **Statement 2:** \( \sin(x) \) is positive in the first and second quadrants. ### Step 1: Evaluate Statement 1 1. **Convert radians to degrees:** - \( \sin(1) \) in degrees: \[ 1 \text{ radian} = \frac{180}{\pi} \approx 57.29^\circ \] - \( \sin(2) \) in degrees: \[ 2 \text{ radians} = \frac{360}{\pi} \approx 114.59^\circ \] - \( \sin(3) \) in degrees: \[ 3 \text{ radians} = \frac{540}{\pi} \approx 171.88^\circ \] 2. **Evaluate the sine values:** - \( \sin(1) \approx 0.8415 \) - \( \sin(2) \approx 0.9093 \) - \( \sin(3) \approx 0.1411 \) 3. **Compare the sine values:** - We need to check if \( \sin(3) < \sin(1) < \sin(2) \): - \( 0.1411 < 0.8415 < 0.9093 \) is true. Thus, **Statement 1 is true.** ### Step 2: Evaluate Statement 2 1. **Understanding the sine function:** - The sine function is positive in the first quadrant (0 to \( \frac{\pi}{2} \)) and in the second quadrant (\( \frac{\pi}{2} \) to \( \pi \)). - Therefore, \( \sin(x) \) is indeed positive in these quadrants. Thus, **Statement 2 is also true.** ### Step 3: Determine the relationship between the statements 1. **Check if Statement 2 explains Statement 1:** - Statement 2 states that \( \sin(x) \) is positive in the first and second quadrants, but it does not provide an explanation for why \( \sin(3) < \sin(1) < \sin(2) \). - Therefore, while both statements are true, Statement 2 does not explain Statement 1. ### Conclusion - **Statement 1 is true.** - **Statement 2 is true.** - **Statement 2 is not a correct explanation for Statement 1.** Thus, the correct option is **B**: Statement 1 is true, Statement 2 is true, and Statement 2 is not a correct explanation for Statement 1. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Statement -1: sin 1 lt sin 2 lt sin3 Statement-2: sin3 lt sin2 lt sin1 Statement-3: sinx_(1) lt sinx_(2), x_(1) , x_(2) in (0,pi/2)

Statement-1: sin (pi+theta)=-sin theta Statement-2: sin(npi+theta)=(-1)^(n) sin theta , n in N .

Statement 1. cos^-1 x-sin^-1 (x/2+sqrt((3-3x^2))/2)=- pi/3, where 1/2 lexle1 , Statement 2. 2sin^-1 x=sin^-1 2x sqrt(1-x^2), where - 1/sqrt(2)lexle1/sqrt(2). (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true

Solve sin 3 theta + sin theta = sin 2 theta, 0 le theta le 2pi. Given the general solution.

Statement-1: tan22 (1/2)^(@) is a root of the equation (1+x^(2))/(1-x^(2)) = sqrt(2) . Statement-2: sin alpha = x+ k/x is possible for real value x if k le 1/4 . Statement -3: |sin nx| le n|sin x| is valid for all natural numbers n.

If sin3A=1 and 0 le A le 90^(@) , find : sin A

If sin3A=1 and 0 le A le 90^(@) , find : sin A

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Statement-1: The number of |cosx | = sinx in [0,4pi] is 4 Statement-2: The equation sin^(2)x -1/sqrt(2) (sqrt(3)+1) sinx + sqrt(3)/4=0 has two roots in [0,pi/2] . Statement-3:The number of solutions of sin theta + sin 5theta= sin 3theta, theta in [0,pi] is 5.