Home
Class 12
MATHS
Statement -1 : If a, b,c, theta in R, th...

Statement -1 : If a, b,c, `theta in R`, then the equation `a sin theta + b cos theta=c ` has a solution only if `c^2 gt a^2 + b^2 `
Statement-2 : If a,b,c, `theta ne R,` thent he minimuma nd maximum values of a `sintheta + b cos theta ` are respectively `-sqrt(a^2-b^2) and sqrt(a^2 +b^2)`

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Step 1: Analyze Statement 1 The statement claims that the equation \( a \sin \theta + b \cos \theta = c \) has a solution only if \( c^2 > a^2 + b^2 \). 1. **Start with the equation**: \[ a \sin \theta + b \cos \theta = c \] 2. **Rearranging the equation**: We can express this equation in a different form by dividing both sides by \( \sqrt{a^2 + b^2} \): \[ \frac{a}{\sqrt{a^2 + b^2}} \sin \theta + \frac{b}{\sqrt{a^2 + b^2}} \cos \theta = \frac{c}{\sqrt{a^2 + b^2}} \] 3. **Let \( \cos \phi = \frac{a}{\sqrt{a^2 + b^2}} \) and \( \sin \phi = \frac{b}{\sqrt{a^2 + b^2}} \)**: This implies that \( \cos^2 \phi + \sin^2 \phi = 1 \). 4. **Using the sine addition formula**: The left-hand side can be rewritten using the sine addition formula: \[ \sqrt{a^2 + b^2} \sin(\theta + \phi) = c \] 5. **Finding the range of \( \sin(\theta + \phi) \)**: Since the sine function ranges from -1 to 1, we have: \[ -\sqrt{a^2 + b^2} \leq c \leq \sqrt{a^2 + b^2} \] 6. **Conclusion for Statement 1**: This implies that for the equation to have a solution, it must be true that: \[ |c| \leq \sqrt{a^2 + b^2} \] Therefore, the statement \( c^2 > a^2 + b^2 \) is **false**. ### Step 2: Analyze Statement 2 The statement claims that the minimum and maximum values of \( a \sin \theta + b \cos \theta \) are \( -\sqrt{a^2 + b^2} \) and \( \sqrt{a^2 + b^2} \) respectively. 1. **Using the result from Statement 1**: From the analysis above, we have established that the maximum value of \( a \sin \theta + b \cos \theta \) is \( \sqrt{a^2 + b^2} \) and the minimum value is \( -\sqrt{a^2 + b^2} \). 2. **Conclusion for Statement 2**: Therefore, Statement 2 is **true**. ### Final Conclusion - Statement 1 is **false**. - Statement 2 is **true**. Thus, the correct answer is that Statement 1 is false and Statement 2 is true.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If a cos theta-b sin theta = c, then find the value of a sin theta + b cos theta.

If tan theta = b/a, then find the value of a cos 2theta + b sin 2theta .

if a cos theta + b sin theta = c. then what is the value of a sin theta -b cos theta

If acos theta-b sin theta=c , show that asin theta+b cos theta=+-sqrt(a^2+b^2-c^2dot)

If a sintheta + bcos theta = C, then prove that a costheta -b sintheta = sqrt(a^2+b^2-c^2)

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =

If tan theta=a/b then b cos 2theta+asin 2theta=

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

a sin^(2) theta + b cos^(2) theta =c implies tan^(2) theta =

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =