Home
Class 12
MATHS
If tan x + cot x =2 , then sin^(2n)x + c...

If `tan x + cot x =2` , then `sin^(2n)x + cos^(2n)`x is equal to

A

`2^n`

B

`- 1/2`

C

`1/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan x + \cot x = 2 \), we need to find the value of \( \sin^{2n} x + \cos^{2n} x \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation: \[ \tan x + \cot x = 2 \] We know that \( \tan x = \frac{\sin x}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \). 2. **Using AM-GM Inequality**: Since both \( \tan x \) and \( \cot x \) are positive (as \( \tan x + \cot x = 2 \) implies both are greater than 0), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{\tan x + \cot x}{2} \geq \sqrt{\tan x \cdot \cot x} \] This simplifies to: \[ \frac{\tan x + \cot x}{2} \geq 1 \] Therefore, we have: \[ \tan x + \cot x \geq 2 \] 3. **Equality Condition**: The equality in AM-GM holds when: \[ \tan x = \cot x \] This implies: \[ \tan^2 x = 1 \quad \Rightarrow \quad \tan x = 1 \] Thus, we find: \[ x = \frac{\pi}{4} + k\pi \quad (k \in \mathbb{Z}) \] 4. **Finding \( \sin x \) and \( \cos x \)**: For \( x = \frac{\pi}{4} \): \[ \sin x = \cos x = \frac{1}{\sqrt{2}} \] 5. **Calculating \( \sin^{2n} x + \cos^{2n} x \)**: Now we substitute \( x = \frac{\pi}{4} \) into the expression: \[ \sin^{2n} x + \cos^{2n} x = \left(\frac{1}{\sqrt{2}}\right)^{2n} + \left(\frac{1}{\sqrt{2}}\right)^{2n} \] This simplifies to: \[ 2 \left(\frac{1}{\sqrt{2}}\right)^{2n} = 2 \left(\frac{1}{2}\right)^{n} = 2^{1-n} \] 6. **Final Result**: Therefore, we conclude that: \[ \sin^{2n} x + \cos^{2n} x = 2^{1-n} \] ### Conclusion: The value of \( \sin^{2n} x + \cos^{2n} x \) is \( 2^{1-n} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

If sinx+cos e cx=2, then sin^n x+cos e c^n x is equal to 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

The general solution of the equation sin^(2)x + cos^(2)3x =1 is equal to : (where n in I )

Let x, y, in R satisfy the condition such that sin x sin y + 3 cos y +4 sin y cos x=sqrt(26) . The value of tan^(2)x + cot^(2)y is equal to

If tan(cotx)=cot(tanx) , then sin2x is equal to

If tan(cotx)=cot(tanx), then sin2x is equal to

If cos2x+2cosx=1t h e n ,(2-cos^2x)sin^2x is equal to

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

If the integal int (5 tan x dx )/(tan x-2) =x +a ln |sin x-2 cos x | +C, then 'a' is equal to :

If tan (cot x) = cot (tan x) , prove that : sin 2x = 4/((2n+1) pi)