Home
Class 12
MATHS
If : sin (alpha + beta)=1 and sin (alpha...

If : `sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2),`
`"then" : tan (alpha+2beta)*tan(2alpha+beta)=`

A

1

B

`-1`

C

zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's start from the given equations: 1. **Given Equations:** \[ \sin(\alpha + \beta) = 1 \] \[ \sin(\alpha - \beta) = \frac{1}{2} \] 2. **Analyzing the First Equation:** The sine function equals 1 when its argument is \(90^\circ\) (or \(\frac{\pi}{2}\) radians). Therefore, we can write: \[ \alpha + \beta = 90^\circ \] 3. **Analyzing the Second Equation:** The sine function equals \(\frac{1}{2}\) when its argument is \(30^\circ\) (or \(\frac{\pi}{6}\) radians). Therefore, we can write: \[ \alpha - \beta = 30^\circ \] 4. **Solving the System of Equations:** Now we have a system of two equations: \[ \alpha + \beta = 90^\circ \quad (1) \] \[ \alpha - \beta = 30^\circ \quad (2) \] We can add these two equations: \[ (\alpha + \beta) + (\alpha - \beta) = 90^\circ + 30^\circ \] This simplifies to: \[ 2\alpha = 120^\circ \] Dividing both sides by 2 gives: \[ \alpha = 60^\circ \] 5. **Finding Beta:** Now, substitute \(\alpha = 60^\circ\) back into equation (1): \[ 60^\circ + \beta = 90^\circ \] Solving for \(\beta\): \[ \beta = 90^\circ - 60^\circ = 30^\circ \] 6. **Finding \( \tan(\alpha + 2\beta) \) and \( \tan(2\alpha + \beta) \):** Now we need to calculate: \[ \tan(\alpha + 2\beta) \quad \text{and} \quad \tan(2\alpha + \beta) \] First, calculate \( \alpha + 2\beta \): \[ \alpha + 2\beta = 60^\circ + 2 \times 30^\circ = 60^\circ + 60^\circ = 120^\circ \] Now calculate \( \tan(120^\circ) \): \[ \tan(120^\circ) = -\frac{1}{\sqrt{3}} \] Next, calculate \( 2\alpha + \beta \): \[ 2\alpha + \beta = 2 \times 60^\circ + 30^\circ = 120^\circ + 30^\circ = 150^\circ \] Now calculate \( \tan(150^\circ) \): \[ \tan(150^\circ) = -\frac{1}{\sqrt{3}} \] 7. **Final Calculation:** Now we multiply the two tangent values: \[ \tan(\alpha + 2\beta) \cdot \tan(2\alpha + \beta) = \left(-\frac{1}{\sqrt{3}}\right) \cdot \left(-\frac{1}{\sqrt{3}}\right) = \frac{1}{3} \] 8. **Conclusion:** Therefore, the final answer is: \[ \tan(\alpha + 2\beta) \cdot \tan(2\alpha + \beta) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that tan alpha = 2 tan beta.

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .