Home
Class 12
MATHS
If alpha is a root of 25"cos"^(2) theta+...

If `alpha` is a root of `25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2) lt alpha lt pi, " then sin"2 alpha` is equal to

A

(a) `(24)/(25)`

B

(b) `-(24)/(25)`

C

(c) `(13)/(18)`

D

(d) `-(13)/(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 25 \cos^2 \theta + 5 \cos \theta - 12 = 0 \) for \( \theta \) in the interval \( \left( \frac{\pi}{2}, \pi \right) \) and find \( \sin 2\alpha \), we will follow these steps: ### Step 1: Identify the coefficients The given quadratic equation is in the standard form \( a x^2 + b x + c = 0 \), where: - \( a = 25 \) - \( b = 5 \) - \( c = -12 \) ### Step 2: Calculate the discriminant The discriminant \( D \) is given by the formula: \[ D = b^2 - 4ac \] Substituting the values: \[ D = 5^2 - 4 \cdot 25 \cdot (-12) = 25 + 1200 = 1225 \] ### Step 3: Find the roots using the quadratic formula The roots of the quadratic equation can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{D}}{2a} \] Substituting the values: \[ \cos \theta = \frac{-5 \pm \sqrt{1225}}{2 \cdot 25} \] Calculating \( \sqrt{1225} = 35 \): \[ \cos \theta = \frac{-5 \pm 35}{50} \] Calculating the two possible values: 1. \( \cos \theta = \frac{30}{50} = \frac{3}{5} \) 2. \( \cos \theta = \frac{-40}{50} = -\frac{4}{5} \) ### Step 4: Determine the valid root for \( \alpha \) Since \( \alpha \) is in the interval \( \left( \frac{\pi}{2}, \pi \right) \), we know that \( \cos \alpha \) must be negative. Therefore, we take: \[ \cos \alpha = -\frac{4}{5} \] ### Step 5: Find \( \sin^2 \alpha \) Using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos \alpha \): \[ \sin^2 \alpha + \left(-\frac{4}{5}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{16}{25} = 1 \] \[ \sin^2 \alpha = 1 - \frac{16}{25} = \frac{25 - 16}{25} = \frac{9}{25} \] ### Step 6: Find \( \sin 2\alpha \) Using the double angle formula: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] Substituting the values: \[ \sin 2\alpha = 2 \cdot \sqrt{\frac{9}{25}} \cdot \left(-\frac{4}{5}\right) \] Calculating \( \sin \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5} \): \[ \sin 2\alpha = 2 \cdot \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = 2 \cdot \frac{3 \cdot (-4)}{25} = \frac{-24}{25} \] ### Final Answer Thus, the value of \( \sin 2\alpha \) is: \[ \sin 2\alpha = -\frac{24}{25} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If 0 lt alpha lt beta lt (pi)/(2) then

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

If alpha is a root of 25 cos^2theta+5costheta-12=0 , pi/2 a. (24)/(25) b. -(24)/(25) c. (13)/(18) d. -(13)/(18)