Home
Class 12
MATHS
If sin(theta-x) = a, cos (theta-y) = b, ...

If `sin(theta-x) = a, cos (theta-y) = b`, then `cos(x-y)` may be equal to :

A

`bsqrt((1-a^(2))) +asqrt((1-b^(2)))`

B

ab

C

`asqrt((1-b^(2))) -bsqrt((1-a^(2)))`

D

2ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( \cos(x-y) \) given that \( \sin(\theta - x) = a \) and \( \cos(\theta - y) = b \), we can follow these steps: ### Step-by-Step Solution: 1. **Express \( \theta \) in terms of \( x \) and \( a \)**: From the equation \( \sin(\theta - x) = a \), we can write: \[ \theta - x = \sin^{-1}(a) \] Therefore, we can express \( \theta \) as: \[ \theta = x + \sin^{-1}(a) \tag{1} \] 2. **Express \( \theta \) in terms of \( y \) and \( b \)**: From the equation \( \cos(\theta - y) = b \), we can write: \[ \theta - y = \cos^{-1}(b) \] Thus, we can express \( \theta \) as: \[ \theta = y + \cos^{-1}(b) \tag{2} \] 3. **Set the two expressions for \( \theta \) equal to each other**: From equations (1) and (2), we have: \[ x + \sin^{-1}(a) = y + \cos^{-1}(b) \] 4. **Rearrange to find \( x - y \)**: Rearranging the above equation gives: \[ x - y = \cos^{-1}(b) - \sin^{-1}(a) \tag{3} \] 5. **Find \( \cos(x - y) \)**: Now we need to find \( \cos(x - y) \). Using equation (3): \[ \cos(x - y) = \cos(\cos^{-1}(b) - \sin^{-1}(a)) \] 6. **Apply the cosine difference formula**: Using the cosine difference identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] where \( A = \cos^{-1}(b) \) and \( B = \sin^{-1}(a) \): \[ \cos(x - y) = \cos(\cos^{-1}(b)) \cos(\sin^{-1}(a)) + \sin(\cos^{-1}(b)) \sin(\sin^{-1}(a)) \] 7. **Simplify using trigonometric identities**: We know: \[ \cos(\cos^{-1}(b)) = b \] \[ \sin(\sin^{-1}(a)) = a \] For \( \cos(\sin^{-1}(a)) \), we can use the identity \( \sin^2 + \cos^2 = 1 \): \[ \cos(\sin^{-1}(a)) = \sqrt{1 - a^2} \] For \( \sin(\cos^{-1}(b)) \): \[ \sin(\cos^{-1}(b)) = \sqrt{1 - b^2} \] 8. **Combine the results**: Substituting these into our equation gives: \[ \cos(x - y) = b \cdot \sqrt{1 - a^2} + a \cdot \sqrt{1 - b^2} \] ### Final Result: Thus, the value of \( \cos(x - y) \) is: \[ \cos(x - y) = b \sqrt{1 - a^2} + a \sqrt{1 - b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta, then 1+x y is equal to sin^2theta+sin^2beta (b) sin^2theta+cos^2beta cos^2theta+cos^2theta (d) cos^2theta+sin^2beta

If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are x sec theta + y cosec theta =a and x cos theta -y sin theta = a cos 2 theta , then 4p^(2) + q^(2) is equal to

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Prove that : x cos theta + y sin theta = a and x sin theta - y cos theta = b are the parametric equations of a circle for all theta satisfying 0le thetalt2pi

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

If x = a( sin theta - theta cos theta) and y = a ( cos theta + theta sin theta) " find " (dy)/(dx) at theta = pi/4

If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of |cos theta| is equal to

Find (dy)/(dx) when x = a cos theta and y = b sin theta