Home
Class 12
MATHS
If x=ycos((2pi)/3)=zcos((4pi)/3), then x...

If `x=ycos((2pi)/3)=zcos((4pi)/3)`, then xy+yz+zx= (a) -1 (b) 0 (c) 1 (d) 2

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x = y \cos\left(\frac{2\pi}{3}\right) \) 2. \( x = z \cos\left(\frac{4\pi}{3}\right) \) ### Step 1: Calculate \(\cos\left(\frac{2\pi}{3}\right)\) and \(\cos\left(\frac{4\pi}{3}\right)\) We know that: - \(\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\) - \(\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}\) ### Step 2: Substitute the cosine values into the equations From the first equation: \[ x = y \left(-\frac{1}{2}\right) \implies y = -2x \] From the second equation: \[ x = z \left(-\frac{1}{2}\right) \implies z = -2x \] ### Step 3: Substitute \(y\) and \(z\) in the expression \(xy + yz + zx\) Now we need to find \(xy + yz + zx\): \[ xy = x(-2x) = -2x^2 \] \[ yz = (-2x)(-2x) = 4x^2 \] \[ zx = (-2x)x = -2x^2 \] ### Step 4: Combine the terms Now, we combine all the terms: \[ xy + yz + zx = -2x^2 + 4x^2 - 2x^2 \] \[ = (-2x^2 - 2x^2 + 4x^2) = 0 \] ### Final Answer Thus, the value of \(xy + yz + zx\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

If a=cos((4pi)/3)+isin((4pi)/3) then |(1,1,1),(1,a,a^2),(1,a^2,a)| (a) purely real (b) purely imaginary (c) 0 (d) none of these

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi

If int_(pi/4)^((3pi)/4) x/(1+sinx)dx=k(sqrt(2)-1) , then k = (A) 0 (B) pi (C) 2pi (D) none of these

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)