Home
Class 12
MATHS
If sintheta+sin^(2)theta = 1 then cos^(2...

If `sintheta+sin^(2)theta = 1` then `cos^(2)theta+cos^(4)theta` is equal to :

A

`(1)/(4)`

B

`(1)/(2)`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta + \sin^2 \theta = 1 \) and find the value of \( \cos^2 \theta + \cos^4 \theta \), we can follow these steps: ### Step 1: Rearranging the given equation We start with the equation: \[ \sin \theta + \sin^2 \theta = 1 \] Rearranging gives us: \[ \sin^2 \theta = 1 - \sin \theta \] **Hint:** You can isolate \(\sin^2 \theta\) by moving \(\sin \theta\) to the other side of the equation. ### Step 2: Using the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] From this, we can express \(\cos^2 \theta\) in terms of \(\sin^2 \theta\): \[ \cos^2 \theta = 1 - \sin^2 \theta \] **Hint:** Substitute \(\sin^2 \theta\) from Step 1 into this equation. ### Step 3: Substitute \(\sin^2 \theta\) Substituting \( \sin^2 \theta = 1 - \sin \theta \) into the equation for \(\cos^2 \theta\): \[ \cos^2 \theta = 1 - (1 - \sin \theta) = \sin \theta \] **Hint:** This step connects \(\cos^2 \theta\) directly to \(\sin \theta\). ### Step 4: Squaring \(\cos^2 \theta\) Now, we square both sides to find \(\cos^4 \theta\): \[ \cos^4 \theta = (\cos^2 \theta)^2 = (\sin \theta)^2 = \sin^2 \theta \] **Hint:** Remember that squaring a quantity involves multiplying it by itself. ### Step 5: Substitute \(\sin^2 \theta\) again Now we can substitute \(\sin^2 \theta\) back into the expression we need to evaluate: \[ \cos^2 \theta + \cos^4 \theta = \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity: \[ \cos^2 \theta + \sin^2 \theta = 1 \] **Hint:** Recognize that this is a fundamental identity in trigonometry. ### Final Answer Thus, we find: \[ \cos^2 \theta + \cos^4 \theta = 1 \] So the answer is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

cos^(4)theta-sin^(4)theta is equal to

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

If sintheta+sin^(2)theta=1 , then prove that cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta-1=0

If sintheta+sin^2theta=1 , then cos^2theta+cos^4theta =? (a)-1 (b)0 (c)1 (d)2

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

If sintheta+sin^(2)theta=1 , then find value of cos^(12)theta+3cos^(10)theta+3cos^(8)theta+cos^(6)theta-1

If sintheta+sin^2theta=1, then prove that cos^(12)theta+3cos^(10)theta+3cos^8theta+cos^6theta-1=0 Given that sintheta=1-sin^2theta=1-sin^2theta=cos^2theta