Home
Class 12
MATHS
The product cot123^0dotcot133^0dotcot137...

The product `cot123^0dotcot133^0dotcot137^0dotcot147^0,` when simplified is equal to: (a) `− 1` (b) `tan 37^ ∘` (c) `cot 33^ ∘` (d)` 1`

A

-1

B

`tan37^(@)`

C

`cot33^(@)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the product \( \cot 123^\circ \cdot \cot 133^\circ \cdot \cot 137^\circ \cdot \cot 147^\circ \), we will use trigonometric identities and properties of cotangent. ### Step-by-Step Solution: 1. **Rewrite the cotangent functions:** \[ \cot 123^\circ = \cot(90^\circ + 33^\circ) = -\tan 33^\circ \] \[ \cot 133^\circ = \cot(90^\circ + 43^\circ) = -\tan 43^\circ \] \[ \cot 137^\circ = \cot(180^\circ - 43^\circ) = \cot 43^\circ \] \[ \cot 147^\circ = \cot(180^\circ - 33^\circ) = \cot 33^\circ \] 2. **Substituting these values into the product:** \[ \cot 123^\circ \cdot \cot 133^\circ \cdot \cot 137^\circ \cdot \cot 147^\circ = (-\tan 33^\circ) \cdot (-\tan 43^\circ) \cdot \cot 43^\circ \cdot \cot 33^\circ \] 3. **Simplifying the expression:** \[ = \tan 33^\circ \cdot \tan 43^\circ \cdot \cot 43^\circ \cdot \cot 33^\circ \] 4. **Using the identity \( \tan \theta \cdot \cot \theta = 1 \):** \[ = (\tan 33^\circ \cdot \cot 33^\circ) \cdot (\tan 43^\circ \cdot \cot 43^\circ) = 1 \cdot 1 = 1 \] ### Final Answer: Thus, the product simplifies to: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The product cot123^@*cot133^@*cot137^@*cot147^@, when simplified is equal to: (a) -1 (b) tan37^@ (c) cot33^@ (d) 1

cot 6^0 cot 42^0 cot 66^0 cot 78^0=1

Value of (3+cot80^0cot20^0)/(cot80^0+cot20^0) is equal to (a) cot20^0 (b) tan50^0 (c) cot50^0 (d) cotsqrt(20^0)

The value of (tan55^0)/(cot35^0)+cot1^0cot2^0cot3^0cot90^0,i s -2 (b) 2 (c) 1 (d) 0

(1+tan^2A)/(1+cot^2A) is equal to sec^2A (b) -1 (c) cot^2A (d) tan^2A

cot16^0cot44^0+cot44^0cot76^0-cot76^0cot16^0 = (a) 1 (b) 2 (c) 3 (d) 4

If A =tan6^0tan42^0 and B=cot66^0cot78^0 , then

Ifint_0^1cot^(-1)(1-x+x^2)dx=lambdaint_0^1tan^(-1)x dx ,then lambda is equal to 1 (b) 2 (c) 3 (d) 4

(cos 10^0+sin 10^0)/(cos 10^0-sin 10^0) is equal to tan55^0 b. cos 55^0 c. -tan35^0 d. -cot35^0

The value of int_(0)^(a) log ( cot a + tan x) d x , where a in (0,pi//2) is equal to