Home
Class 12
MATHS
The number of ordered pairs (alpha, beta...

The number of ordered pairs (`alpha, beta`) ,where `alpha, beta in (-pi, pi)` satisfying `cos(alpha-beta) =1 "and" cos(alpha+beta) = (1)/(sqrt2)` is :

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of ordered pairs \((\alpha, \beta)\) where \(\alpha, \beta \in (-\pi, \pi)\) that satisfy the equations: 1. \(\cos(\alpha - \beta) = 1\) 2. \(\cos(\alpha + \beta) = \frac{1}{\sqrt{2}}\) ### Step 1: Solve \(\cos(\alpha - \beta) = 1\) From the trigonometric identity, we know that \(\cos(x) = 1\) when \(x = 2n\pi\) for any integer \(n\). In our case, we have: \[ \alpha - \beta = 2n\pi \] Since \(\alpha\) and \(\beta\) are restricted to the interval \((- \pi, \pi)\), the only solution that fits this constraint is: \[ \alpha - \beta = 0 \implies \alpha = \beta \] ### Step 2: Substitute \(\alpha = \beta\) into the second equation Now we substitute \(\alpha = \beta\) into the second equation: \[ \cos(\alpha + \beta) = \frac{1}{\sqrt{2}} \] This simplifies to: \[ \cos(2\alpha) = \frac{1}{\sqrt{2}} \] ### Step 3: Solve \(\cos(2\alpha) = \frac{1}{\sqrt{2}}\) The cosine function equals \(\frac{1}{\sqrt{2}}\) at specific angles. Specifically: \[ 2\alpha = \frac{\pi}{4} + 2k\pi \quad \text{and} \quad 2\alpha = -\frac{\pi}{4} + 2k\pi \] for any integer \(k\). ### Step 4: Determine the values of \(\alpha\) Dividing by 2 gives us: \[ \alpha = \frac{\pi}{8} + k\pi \quad \text{and} \quad \alpha = -\frac{\pi}{8} + k\pi \] ### Step 5: Find valid \(k\) values We need to find the values of \(\alpha\) that lie within the interval \((- \pi, \pi)\): 1. For \(k = 0\): - \(\alpha = \frac{\pi}{8}\) - \(\alpha = -\frac{\pi}{8}\) 2. For \(k = -1\): - \(\alpha = \frac{\pi}{8} - \pi = -\frac{7\pi}{8}\) - \(\alpha = -\frac{\pi}{8} - \pi = -\frac{9\pi}{8}\) (not valid since \(-\frac{9\pi}{8} < -\pi\)) 3. For \(k = 1\): - \(\alpha = \frac{\pi}{8} + \pi = \frac{9\pi}{8}\) (not valid since \(\frac{9\pi}{8} > \pi\)) - \(\alpha = -\frac{\pi}{8} + \pi = \frac{7\pi}{8}\) ### Step 6: Valid solutions for \(\alpha\) The valid solutions for \(\alpha\) are: 1. \(\alpha = \frac{\pi}{8}\) 2. \(\alpha = -\frac{\pi}{8}\) 3. \(\alpha = -\frac{7\pi}{8}\) 4. \(\alpha = \frac{7\pi}{8}\) ### Step 7: Count ordered pairs \((\alpha, \beta)\) Since \(\alpha = \beta\), each valid \(\alpha\) gives us a corresponding \(\beta\). Thus, we have: - \((\frac{\pi}{8}, \frac{\pi}{8})\) - \((- \frac{\pi}{8}, - \frac{\pi}{8})\) - \((- \frac{7\pi}{8}, - \frac{7\pi}{8})\) - \((\frac{7\pi}{8}, \frac{7\pi}{8})\) This results in a total of **4 ordered pairs**. ### Final Answer The number of ordered pairs \((\alpha, \beta)\) is **4**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The number of ordered pairs (alpha , beta ) , where alpha , beta in [0,2pi] satisfying log_(2 sec x )(beta^(2)-6beta+10)=log_(3)| cos alpha | is

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

The value of 2alpha+beta(0ltalpha, beta lt (pi)/(2)) , satisfying the equation cos alpha cos beta cos (alpha+beta)=-(1)/(8) is equal to

If alpha+beta= 60^0 , prove that cos^2 alpha + cos^2 beta - cosalpha cos beta = 3/4 .

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -JEE Main (Archive)
  1. Let alphaa n dbeta be nonzero real numbers such that 2(cosbeta-cosalph...

    Text Solution

    |

  2. Let f: (-1, 1) to R be such that f(cos 4theta) = (2)/(2-sec^(2)theta) ...

    Text Solution

    |

  3. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  4. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. The number of distinct solution of the equation 5/4 cos^(2) 2x + cos^(...

    Text Solution

    |

  7. The positive integer value of n >3 satisfying the equation 1/(sin(pi/n...

    Text Solution

    |

  8. The number of values of theta in the interval (-pi/2, pi/2) such that ...

    Text Solution

    |

  9. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  10. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  11. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. The number of ordered pairs (alpha, beta) ,where alpha, beta in (-pi, ...

    Text Solution

    |

  14. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  15. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  16. The expression (tan A)/(1-cotA)+(cot A)/(1-tan A) can be written as

    Text Solution

    |

  17. In a Delta PQR , if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1, th...

    Text Solution

    |

  18. If A=sin^(2)x+cos^(4)x, then for all real x

    Text Solution

    |

  19. Let cos(alpha + beta) = 4//5 and let sin ( alpha - beta)= 5//13, wher...

    Text Solution

    |

  20. Let A and B denote the statements A : cos alpha + cos beta + cos gam...

    Text Solution

    |