Home
Class 12
MATHS
If sum(k=0)^(200)i^k+prod(p=1)^(50)i^p =...

If `sum_(k=0)^(200)i^k+prod_(p=1)^(50)i^p =x+iy` then `(x,y)` is

A

`(0,1)`

B

`(1,-1)`

C

`(2,3)`

D

`(4,8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question: \[ \sum_{k=0}^{200} i^k + \prod_{p=1}^{50} i^p = x + iy \] ### Step 1: Evaluate the summation \(\sum_{k=0}^{200} i^k\) The powers of \(i\) cycle every 4 terms: - \(i^0 = 1\) - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\), and so on. Since the powers repeat every 4, we can find how many complete cycles fit into 200: \[ 200 \div 4 = 50 \quad \text{(with a remainder of 0)} \] This means we have 50 complete cycles of \(1 + i - 1 - i\). The sum of one complete cycle is: \[ 1 + i - 1 - i = 0 \] Thus, the total sum for 50 cycles is: \[ 50 \times 0 = 0 \] ### Step 2: Evaluate the product \(\prod_{p=1}^{50} i^p\) The product can be simplified as: \[ \prod_{p=1}^{50} i^p = i^{1 + 2 + 3 + \ldots + 50} \] The sum of the first 50 natural numbers is: \[ \frac{50 \times 51}{2} = 1275 \] Thus, we have: \[ \prod_{p=1}^{50} i^p = i^{1275} \] ### Step 3: Simplify \(i^{1275}\) To simplify \(i^{1275}\), we find the remainder when 1275 is divided by 4: \[ 1275 \div 4 = 318 \quad \text{(remainder 3)} \] Thus, \[ i^{1275} = i^3 = -i \] ### Step 4: Combine the results Now we combine the results from Steps 1 and 2: \[ \sum_{k=0}^{200} i^k + \prod_{p=1}^{50} i^p = 0 + (-i) = -i \] This can be expressed as: \[ 0 + (-1)i \] Thus, we have: \[ x + iy = 0 - i \] From this, we can identify: - \(x = 0\) - \(y = -1\) ### Final Answer The coordinates \((x, y)\) are: \[ (0, -1) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^200 sin^-1 x_i=100pi, then sum _(i=1)^200 x_i^2 is equal to

If int _(0)^(1) (sum _(r=1) ^(2013)(x)/(x ^(2)+r ^(2)) prod_(r=1)^(2013)(x ^(2) +r ^(2) )) dx =1/2 [(prod_(r=1)^(2013)(1+r ^(2)))-k^(2)] then k=

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

If Isum_(k=1)^(98)int_k^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I (log)_e 99 (c) I >(49)/(50) (d) I<(log)_e 99

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below : sum_(i=1)^(50)x_i=212 ,sum_(i=1)^(50)x_i^2=902. 8 ,sum_(i=1)^(50)y_i=261 ,sum_(i=1)^50 y_ i^2=1457. 6 Which is more varying, the length or weight?

If sum_(i=1)^(4)(sin^(-1)x_(i)+cos^(-1)y_(i))=6pi , then \int\limitsum_(i=1)^(4)x(i)^sum(i=1)^(4)y(i) xln(1+x^(2))(e^(x^(2))/(1+e^(2x)))dx is euqal to

Value of sum_(k = 1)^(100)(i^(k!) + omega^(k!)) , where i = sqrt(-1) and omega is complex cube root of unity , is :

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If i=sqrt(-1), then (i^(n)+i^(-n), n in Z) is equal to

    Text Solution

    |

  2. Consider the following statements : S(1) : - 8 = 2ixx 4i = sqrt((-4)...

    Text Solution

    |

  3. If sum(k=0)^(200)i^k+prod(p=1)^(50)i^p =x+iy then (x,y) is

    Text Solution

    |

  4. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  5. ((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

    Text Solution

    |

  6. If z=1+i, then what is the inverse of z^(2)?

    Text Solution

    |

  7. If z = x + iy lies in the third quadrant, then prove that (barz)/(z) ...

    Text Solution

    |

  8. Write the conjugate of (2-i)/((1-2i)^2) .

    Text Solution

    |

  9. If (a" "+" "i b)" "(c" "+" "i d)" "(e" "+" "if)" "(g" "+" "i h)" "=" "...

    Text Solution

    |

  10. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  11. Find the real values of x\ a n d\ y ,\ if:((1+i)x-2i)/(3+i)+((2-3i)y+i...

    Text Solution

    |

  12. Show that sqrt([-1sqrt({-1-sqrt(-1+ ..."to"oo)})]) = omega, or omega^(...

    Text Solution

    |

  13. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  14. The complex numbers sin x + i sin 2x and cos x - i sin 2x are conjug...

    Text Solution

    |

  15. The value of s u msum(n=1)^(13)(i^n+i^(n+1)),"w h e r e"i=sqrt(-1)"e ...

    Text Solution

    |

  16. The value of 1+sum(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(1...

    Text Solution

    |

  17. If z = re^(itheta), then prove that |e^(iz)| = e^(-r sin theta).

    Text Solution

    |

  18. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  19. Convert of the complex number in the polar form: sqrt()+i

    Text Solution

    |

  20. If -1+sqrt(- 3)=r e^(i \ theta) , then theta is equal to

    Text Solution

    |