Home
Class 12
MATHS
((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is...

`((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2)` is equal to :

A

`2i`

B

`-2i`

C

`-2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1+i}{1-i}\right)^{2} + \left(\frac{1-i}{1+i}\right)^{2}\), we will follow these steps: ### Step 1: Simplify \(\frac{1+i}{1-i}\) To simplify \(\frac{1+i}{1-i}\), we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] Calculating the numerator: \[ (1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] Calculating the denominator: \[ (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] Thus, we have: \[ \frac{1+i}{1-i} = \frac{2i}{2} = i \] ### Step 2: Simplify \(\frac{1-i}{1+i}\) Similarly, we simplify \(\frac{1-i}{1+i}\) by multiplying by the conjugate of the denominator: \[ \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} \] Calculating the numerator: \[ (1-i)(1-i) = 1 - 2i + i^2 = 1 - 2i - 1 = -2i \] Calculating the denominator: \[ (1+i)(1-i) = 1^2 - i^2 = 1 - (-1) = 2 \] Thus, we have: \[ \frac{1-i}{1+i} = \frac{-2i}{2} = -i \] ### Step 3: Substitute back into the original expression Now we substitute back into the expression: \[ \left(\frac{1+i}{1-i}\right)^{2} + \left(\frac{1-i}{1+i}\right)^{2} = (i)^{2} + (-i)^{2} \] Calculating \(i^{2}\) and \((-i)^{2}\): \[ i^{2} = -1 \quad \text{and} \quad (-i)^{2} = (-1)^{2} \cdot i^{2} = 1 \cdot (-1) = -1 \] Thus, we have: \[ (-1) + (-1) = -2 \] ### Final Answer The value of the expression is \(-2\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

((1+i)^(3))/(2+i) is equal to

(1+2i)/(1+3i) is equal to

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

(1+i)^(4)+(1-i)^( 4) is equal to

((1+i)/(sqrt(2)))^8+((1-i)/(sqrt(2)))^8 is equal to

(2/(1-i) + 3/(1+i))((2+3i)/(4+5i)) is equal to

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If A^(2)-A+I=O , then A^(-1) is equal to

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If sum(k=0)^(200)i^k+prod(p=1)^(50)i^p =x+iy then (x,y) is

    Text Solution

    |

  2. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  3. ((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

    Text Solution

    |

  4. If z=1+i, then what is the inverse of z^(2)?

    Text Solution

    |

  5. If z = x + iy lies in the third quadrant, then prove that (barz)/(z) ...

    Text Solution

    |

  6. Write the conjugate of (2-i)/((1-2i)^2) .

    Text Solution

    |

  7. If (a" "+" "i b)" "(c" "+" "i d)" "(e" "+" "if)" "(g" "+" "i h)" "=" "...

    Text Solution

    |

  8. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  9. Find the real values of x\ a n d\ y ,\ if:((1+i)x-2i)/(3+i)+((2-3i)y+i...

    Text Solution

    |

  10. Show that sqrt([-1sqrt({-1-sqrt(-1+ ..."to"oo)})]) = omega, or omega^(...

    Text Solution

    |

  11. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  12. The complex numbers sin x + i sin 2x and cos x - i sin 2x are conjug...

    Text Solution

    |

  13. The value of s u msum(n=1)^(13)(i^n+i^(n+1)),"w h e r e"i=sqrt(-1)"e ...

    Text Solution

    |

  14. The value of 1+sum(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(1...

    Text Solution

    |

  15. If z = re^(itheta), then prove that |e^(iz)| = e^(-r sin theta).

    Text Solution

    |

  16. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  17. Convert of the complex number in the polar form: sqrt()+i

    Text Solution

    |

  18. If -1+sqrt(- 3)=r e^(i \ theta) , then theta is equal to

    Text Solution

    |

  19. The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(...

    Text Solution

    |

  20. If x=a+b,y=aomega+bomega^2 and z=aomega^2+bomega , prove that xyz=a...

    Text Solution

    |