Home
Class 12
MATHS
The value of (1+isqrt(3))/(1-isqrt(3))^(...

The value of `(1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6)` is

A

2

B

`-2`

C

1/32

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1 + i\sqrt{3}}{(1 - i\sqrt{3})^6} + \frac{1 - i\sqrt{3}}{(1 + i\sqrt{3})^6}\), we can follow these steps: ### Step 1: Simplify the individual terms Let's denote \( z_1 = 1 + i\sqrt{3} \) and \( z_2 = 1 - i\sqrt{3} \). We can rewrite the expression as: \[ \frac{z_1}{z_2^6} + \frac{z_2}{z_1^6} \] ### Step 2: Calculate the modulus and argument of \( z_1 \) and \( z_2 \) The modulus of \( z_1 \) is: \[ |z_1| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] The argument of \( z_1 \) is: \[ \theta_1 = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can express \( z_1 \) in polar form: \[ z_1 = 2 \text{cis}\left(\frac{\pi}{3}\right) \] Similarly, for \( z_2 \): \[ |z_2| = 2 \quad \text{and} \quad \theta_2 = -\frac{\pi}{3} \] So, \[ z_2 = 2 \text{cis}\left(-\frac{\pi}{3}\right) \] ### Step 3: Raise \( z_1 \) and \( z_2 \) to the 6th power Using De Moivre's theorem: \[ z_1^6 = (2 \text{cis}\left(\frac{\pi}{3}\right))^6 = 2^6 \text{cis}(2\pi) = 64 \cdot 1 = 64 \] \[ z_2^6 = (2 \text{cis}\left(-\frac{\pi}{3}\right))^6 = 64 \cdot 1 = 64 \] ### Step 4: Substitute back into the expression Now substituting back into the original expression: \[ \frac{z_1}{z_2^6} + \frac{z_2}{z_1^6} = \frac{1 + i\sqrt{3}}{64} + \frac{1 - i\sqrt{3}}{64} \] ### Step 5: Combine the fractions Combining the two fractions: \[ = \frac{(1 + i\sqrt{3}) + (1 - i\sqrt{3})}{64} = \frac{2}{64} = \frac{1}{32} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{32} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The argument of (1-isqrt(3))/(1+isqrt(3)) , is

Find the value of : (1+ isqrt(3))^(2) + (1-isqrt(3))^(2)

The principal argument of (1-isqrt(3))/(1+isqrt(3))

The amplitude of (-2)/(1+isqrt(3)) is

((-1+isqrt(3))/2)^6+((-1-isqrt(3))/2)^6+((-1+isqrt(3))/2)^5+((-1-isqrt(3))/2)^5 is equal to

If a , b ,c real in G.P., then the roots of the equation a x^2+b x+c=0 are in the ratio a. 1/2(-1+isqrt(3)) b. 1/2(1-isqrt(3)) c 1/2(-1-isqrt(3)) d. 1/2(1+isqrt(3))

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

What is the value of ((1)/(2)+isqrt(5))((1)/(2)-isqrt(5)) ?

Column I, Column II The value of the determinant |x+2x+3x+5x+4x+6x+9x+8x+11 x+15| is, p. 1 If one of the roots of the equation |7 6x^2-13 2x^2-13 2x^2-13 3 7|=0i sx+2, then sum of all other five roots is, q. -6 The value of |sqrt(6)2i3+sqrt(6)sqrt(12)sqrt(3)+sqrt(8)i3sqrt(2)+sqrt(6)isqrt(18)sqrt(2)+sqrt(12)isqrt(27)+2i| is, r. 2 If f(theta)=|cos^2thetacosthetas intheta-s inthetacosthetasin^2thetacosthetas intheta-costheta0|=t h e nf(pi//3) , s. -2

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. Find the real values of x\ a n d\ y ,\ if:((1+i)x-2i)/(3+i)+((2-3i)y+i...

    Text Solution

    |

  2. Show that sqrt([-1sqrt({-1-sqrt(-1+ ..."to"oo)})]) = omega, or omega^(...

    Text Solution

    |

  3. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  4. The complex numbers sin x + i sin 2x and cos x - i sin 2x are conjug...

    Text Solution

    |

  5. The value of s u msum(n=1)^(13)(i^n+i^(n+1)),"w h e r e"i=sqrt(-1)"e ...

    Text Solution

    |

  6. The value of 1+sum(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(1...

    Text Solution

    |

  7. If z = re^(itheta), then prove that |e^(iz)| = e^(-r sin theta).

    Text Solution

    |

  8. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  9. Convert of the complex number in the polar form: sqrt()+i

    Text Solution

    |

  10. If -1+sqrt(- 3)=r e^(i \ theta) , then theta is equal to

    Text Solution

    |

  11. The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(...

    Text Solution

    |

  12. If x=a+b,y=aomega+bomega^2 and z=aomega^2+bomega , prove that xyz=a...

    Text Solution

    |

  13. If z and w are two non-zero complex numbers such that z=-w.

    Text Solution

    |

  14. The square roots of - 2 + 2 sqrt(3)i are :

    Text Solution

    |

  15. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  16. If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , ...

    Text Solution

    |

  17. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  18. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  19. The square roots of 7+24i are

    Text Solution

    |

  20. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |