Home
Class 12
MATHS
The value of 1+sum(k=0)^(14) {cos((2k+...

The value of
`1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)}`, is

A

0

B

-1

C

1

D

i

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ 1 + \sum_{k=0}^{14} \left( \cos\left(\frac{(2k+1)\pi}{15}\right) - i \sin\left(\frac{(2k+1)\pi}{15}\right) \right) \] ### Step 1: Rewrite using Euler's formula We can use Euler's formula, which states that: \[ e^{i\theta} = \cos(\theta) + i\sin(\theta) \] Thus, we can rewrite the expression as: \[ \cos\left(\frac{(2k+1)\pi}{15}\right) - i \sin\left(\frac{(2k+1)\pi}{15}\right) = e^{-i\frac{(2k+1)\pi}{15}} \] This allows us to rewrite the summation: \[ 1 + \sum_{k=0}^{14} e^{-i\frac{(2k+1)\pi}{15}} \] ### Step 2: Recognize the summation as a geometric series The summation can be expressed as: \[ 1 + \sum_{k=0}^{14} e^{-i\frac{(2k+1)\pi}{15}} = 1 + \sum_{k=0}^{14} \left( e^{-i\frac{\pi}{15}} \right)^{(2k+1)} \] Let \( \alpha = e^{-i\frac{\pi}{15}} \). The summation becomes: \[ 1 + \sum_{k=0}^{14} \alpha^{(2k+1)} \] ### Step 3: Simplify the summation The series can be simplified to: \[ 1 + \alpha + \alpha^3 + \alpha^5 + \ldots + \alpha^{29} \] This is a geometric series with the first term \( a = \alpha \) and common ratio \( r = \alpha^2 \), with \( n = 15 \) terms. ### Step 4: Use the formula for the sum of a geometric series The sum of a geometric series is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] In our case, we have: \[ S = \alpha \frac{1 - (\alpha^2)^{15}}{1 - \alpha^2} \] Calculating \( (\alpha^2)^{15} = e^{-i\frac{30\pi}{15}} = e^{-i2\pi} = 1 \): \[ S = \alpha \frac{1 - 1}{1 - \alpha^2} = 0 \] ### Step 5: Combine the results Thus, we have: \[ 1 + S = 1 + 0 = 1 \] ### Final Answer The value of the original expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

sum_(k=0)^(5)(-1)^(k)2k

prod_(k=0)^3 (1+cos\ ((2k+1)pi)/8)=

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

Let z_(k) = cos((2kpi)/(10)) -isin ((2kpi)/(10)), k = 1,2,…..,9

Q. The value of is equal sum_(k=1)^13(1/(sin(pi/4+(k-1)pi/6)sin(pi/4+k pi/6)) is equal

Find the value of the sum_(k=0)^359 k.cos k^@ .

Find the value off sum_(k=1)^10(2+3^k)

The value of "cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16pi)/(15) is

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The complex numbers sin x + i sin 2x and cos x - i sin 2x are conjug...

    Text Solution

    |

  2. The value of s u msum(n=1)^(13)(i^n+i^(n+1)),"w h e r e"i=sqrt(-1)"e ...

    Text Solution

    |

  3. The value of 1+sum(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(1...

    Text Solution

    |

  4. If z = re^(itheta), then prove that |e^(iz)| = e^(-r sin theta).

    Text Solution

    |

  5. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  6. Convert of the complex number in the polar form: sqrt()+i

    Text Solution

    |

  7. If -1+sqrt(- 3)=r e^(i \ theta) , then theta is equal to

    Text Solution

    |

  8. The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(...

    Text Solution

    |

  9. If x=a+b,y=aomega+bomega^2 and z=aomega^2+bomega , prove that xyz=a...

    Text Solution

    |

  10. If z and w are two non-zero complex numbers such that z=-w.

    Text Solution

    |

  11. The square roots of - 2 + 2 sqrt(3)i are :

    Text Solution

    |

  12. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  13. If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , ...

    Text Solution

    |

  14. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  15. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  16. The square roots of 7+24i are

    Text Solution

    |

  17. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |

  18. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  19. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  20. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |