Home
Class 12
MATHS
If z and w are two non-zero complex nu...

If z and w are two non-zero complex
numbers such that z=-w.

A

`-w`

B

w

C

`overline(w)`

D

`-overline(w)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If z and omega are two non-zero complex numbers such that |zomega|=1 and arg(z)-arg(omega)=pi/2 , then barzomega is equal to

Let z and w are two non zero complex number such that |z|=|w|, and Arg(z)+Arg(w)=pi then (a) z=w (b) z=overlinew (c) overlinez=overlinew (d) overlinez=-overlinew

Let z and w be two nonzero complex numbers such that |z|=|w| and arg(z)+a r g(w)=pidot Then prove that z=- barw dot

Let z and omega be two non-zero complex numbers, such that |z|=|omega| and "arg"(z)+"arg"(omega)=pi . Then, z equals

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi , then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi, then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let za n dw be two nonzero complex numbers such that |z|=|w|a n d arg(z)+a r g(w)=pidot Then prove that z=- bar w dot

If z 1 ​ and z 2 ​ are two non zero complex numbers such that ∣z 1 ​ +z 2 ​ ∣=∣z 1 ​ ∣+∣z 2 ​ ∣ then arg z 1 ​ -arg z 2 ​ is equal to

Let z_1 and z_2 be two non - zero complex numbers such that z_1/z_2+z_2/z_1=1 then the origin and points represented by z_1 and z_2

Let Z_1 and Z_2 are two non-zero complex number such that |Z_1+Z_2|=|Z_1|=|Z_2| , then Z_1/Z_2 may be :

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(...

    Text Solution

    |

  2. If x=a+b,y=aomega+bomega^2 and z=aomega^2+bomega , prove that xyz=a...

    Text Solution

    |

  3. If z and w are two non-zero complex numbers such that z=-w.

    Text Solution

    |

  4. The square roots of - 2 + 2 sqrt(3)i are :

    Text Solution

    |

  5. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  6. If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , ...

    Text Solution

    |

  7. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  8. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  9. The square roots of 7+24i are

    Text Solution

    |

  10. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |

  11. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  12. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  13. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  14. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  15. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  16. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  17. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  18. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  19. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  20. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |