Home
Class 12
MATHS
The square roots of - 2 + 2 sqrt(3)i ar...

The square roots of `- 2 + 2 sqrt(3)i` are :

A

`pm (1 + sqrt(3)i)`

B

`pm (1 - sqrt(3)i)`

C

`pm (-1 + sqrt(3)i)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the square roots of the complex number \(-2 + 2\sqrt{3}i\), we can follow these steps: ### Step 1: Assume the square root Let the square root of the complex number be represented as \(x + yi\), where \(x\) and \(y\) are real numbers. ### Step 2: Square both sides Squaring both sides gives us: \[ (x + yi)^2 = -2 + 2\sqrt{3}i \] Expanding the left-hand side: \[ x^2 + 2xyi - y^2 = -2 + 2\sqrt{3}i \] This can be separated into real and imaginary parts: \[ (x^2 - y^2) + (2xy)i = -2 + 2\sqrt{3}i \] ### Step 3: Set up equations From the real and imaginary parts, we can set up the following equations: 1. \(x^2 - y^2 = -2\) (Equation 1) 2. \(2xy = 2\sqrt{3}\) (Equation 2) ### Step 4: Simplify Equation 2 From Equation 2, we can simplify: \[ xy = \sqrt{3} \] This gives us \(y = \frac{\sqrt{3}}{x}\). ### Step 5: Substitute \(y\) in Equation 1 Substituting \(y\) into Equation 1: \[ x^2 - \left(\frac{\sqrt{3}}{x}\right)^2 = -2 \] This simplifies to: \[ x^2 - \frac{3}{x^2} = -2 \] Multiplying through by \(x^2\) to eliminate the fraction: \[ x^4 + 2x^2 - 3 = 0 \] ### Step 6: Let \(t = x^2\) Let \(t = x^2\). Then we have a quadratic equation: \[ t^2 + 2t - 3 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \] Calculating the discriminant: \[ t = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm \sqrt{16}}{2} = \frac{-2 \pm 4}{2} \] This gives us two solutions: \[ t = 1 \quad \text{or} \quad t = -3 \] Since \(t = x^2\) must be non-negative, we take \(t = 1\). ### Step 8: Find \(x\) and \(y\) Thus, \(x^2 = 1\) implies \(x = \pm 1\). Now substituting \(x\) back to find \(y\): \[ y = \frac{\sqrt{3}}{x} \] If \(x = 1\), then \(y = \sqrt{3}\). If \(x = -1\), then \(y = -\sqrt{3}\). ### Step 9: Write the final answers Thus, the square roots of \(-2 + 2\sqrt{3}i\) are: \[ 1 + \sqrt{3}i \quad \text{and} \quad -1 - \sqrt{3}i \] ### Final Answer The square roots of \(-2 + 2\sqrt{3}i\) are: \[ \pm (1 + \sqrt{3}i) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The square root of -8i is

The square roots of 7+24i are

Find the square root of 4+4sqrt(3)i

Find the square root of 12+4sqrt(5)i

Find the square root of 7-30sqrt(-2)

The positive square root of 7+sqrt(48)

Find the square roots of : 4ab - 2i( a^(2) - b^(2))

Find the square root of the following: a^2-1+2a sqrt(-1)

Find the square root of the following: a^2-1+2a sqrt(-1)

find the square roots of following : (6sqrt(-2)-7)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If x=a+b,y=aomega+bomega^2 and z=aomega^2+bomega , prove that xyz=a...

    Text Solution

    |

  2. If z and w are two non-zero complex numbers such that z=-w.

    Text Solution

    |

  3. The square roots of - 2 + 2 sqrt(3)i are :

    Text Solution

    |

  4. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  5. If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , ...

    Text Solution

    |

  6. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  7. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  8. The square roots of 7+24i are

    Text Solution

    |

  9. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |

  10. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  11. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  12. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  13. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  14. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  15. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  16. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  17. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  18. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  19. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  20. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |