Home
Class 12
MATHS
If a = cos 2 alpha + i sin 2 alpha , b...

If `a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , c = cos 2 gamma + i sin 2 gamma ` and `d = cos2 delta + i sin 2 delta ` then `sqrt( abcd) + 1/sqrt( abcd)` is :

A

`sqrt(2) cos ( alpha + beta + gamma + delta)`

B

`2 cos ( alpha + beta + gamma + delta)`

C

` cos ( alpha + beta + gamma + delta)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Express each complex number in exponential form Given: - \( a = \cos 2\alpha + i \sin 2\alpha \) - \( b = \cos 2\beta + i \sin 2\beta \) - \( c = \cos 2\gamma + i \sin 2\gamma \) - \( d = \cos 2\delta + i \sin 2\delta \) Using Euler's formula, we can rewrite these as: - \( a = e^{i 2\alpha} \) - \( b = e^{i 2\beta} \) - \( c = e^{i 2\gamma} \) - \( d = e^{i 2\delta} \) ### Step 2: Calculate the product \( abcd \) Now, we find the product: \[ abcd = e^{i 2\alpha} \cdot e^{i 2\beta} \cdot e^{i 2\gamma} \cdot e^{i 2\delta} = e^{i(2\alpha + 2\beta + 2\gamma + 2\delta)} \] This can be simplified to: \[ abcd = e^{i 2(\alpha + \beta + \gamma + \delta)} \] ### Step 3: Find \( \sqrt{abcd} \) Next, we take the square root: \[ \sqrt{abcd} = \sqrt{e^{i 2(\alpha + \beta + \gamma + \delta)}} = e^{i(\alpha + \beta + \gamma + \delta)} \] ### Step 4: Convert back to trigonometric form Using Euler's formula again, we can express this as: \[ \sqrt{abcd} = \cos(\alpha + \beta + \gamma + \delta) + i \sin(\alpha + \beta + \gamma + \delta) \] ### Step 5: Find \( \frac{1}{\sqrt{abcd}} \) Now we calculate the reciprocal: \[ \frac{1}{\sqrt{abcd}} = \frac{1}{e^{i(\alpha + \beta + \gamma + \delta)}} = e^{-i(\alpha + \beta + \gamma + \delta)} = \cos(\alpha + \beta + \gamma + \delta) - i \sin(\alpha + \beta + \gamma + \delta) \] ### Step 6: Add \( \sqrt{abcd} \) and \( \frac{1}{\sqrt{abcd}} \) Now we add the two results: \[ \sqrt{abcd} + \frac{1}{\sqrt{abcd}} = \left( \cos(\alpha + \beta + \gamma + \delta) + i \sin(\alpha + \beta + \gamma + \delta) \right) + \left( \cos(\alpha + \beta + \gamma + \delta) - i \sin(\alpha + \beta + \gamma + \delta) \right) \] The imaginary parts cancel out: \[ = 2 \cos(\alpha + \beta + \gamma + \delta) \] ### Final Answer Thus, the final answer is: \[ \sqrt{abcd} + \frac{1}{\sqrt{abcd}} = 2 \cos(\alpha + \beta + \gamma + \delta) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove that (x-y)/(x+y) =i (tan )(alpha-beta)/2

If a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gamma and b/c+c/a+a/b=1, then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If A(cos alpha,sin alpha), B(cos beta, sin beta), C(cosgamma,sin gamma) are vertices of Delta ABC having ortho centre at origin then find the value of sumcos(alpha-beta).

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The square roots of - 2 + 2 sqrt(3)i are :

    Text Solution

    |

  2. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  3. If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , ...

    Text Solution

    |

  4. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  5. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  6. The square roots of 7+24i are

    Text Solution

    |

  7. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |

  8. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  9. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  10. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  11. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  12. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  13. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  14. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  15. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  16. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  17. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  18. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  19. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  20. The product of all n^(th) root of unity is always

    Text Solution

    |