Home
Class 12
MATHS
The complex number 2^n/(1+i)^(2n)+(1+i)^...

The complex number `2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I` is equal to

A

0

B

2

C

`{ 1 + (-1)^(n)} 1^(n)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression: \[ \frac{2^n}{(1+i)^{2n}} + \frac{(1+i)^{2n}}{2^n} \] where \( n \in \mathbb{I} \) (the set of imaginary numbers). ### Step 1: Simplify the expression We start with the given expression: \[ \frac{2^n}{(1+i)^{2n}} + \frac{(1+i)^{2n}}{2^n} \] ### Step 2: Rationalize the denominator To simplify further, we can rationalize the denominator of the first term. The conjugate of \( 1+i \) is \( 1-i \). Thus, we can multiply the numerator and denominator by \( (1-i)^{2n} \): \[ \frac{2^n (1-i)^{2n}}{(1+i)^{2n} (1-i)^{2n}} + \frac{(1+i)^{2n}}{2^n} \] ### Step 3: Simplify the denominator Using the property \( (a+b)(a-b) = a^2 - b^2 \), we have: \[ (1+i)^{2n} (1-i)^{2n} = |1+i|^{4n} = (2^{1/2})^{4n} = 2^{2n} \] Thus, the denominator simplifies to: \[ 2^{2n} \] ### Step 4: Combine the fractions Now we can rewrite the expression as: \[ \frac{2^n (1-i)^{2n}}{2^{2n}} + \frac{(1+i)^{2n}}{2^n} \] This simplifies to: \[ \frac{(1-i)^{2n}}{2^n} + \frac{(1+i)^{2n}}{2^n} \] ### Step 5: Factor out \( \frac{1}{2^n} \) Factoring out \( \frac{1}{2^n} \): \[ \frac{1}{2^n} \left( (1-i)^{2n} + (1+i)^{2n} \right) \] ### Step 6: Evaluate \( (1-i)^{2n} + (1+i)^{2n} \) Using the polar form of complex numbers, we can express \( 1+i \) and \( 1-i \): - \( 1+i = \sqrt{2} e^{i\pi/4} \) - \( 1-i = \sqrt{2} e^{-i\pi/4} \) Thus, \[ (1+i)^{2n} = (\sqrt{2})^{2n} e^{i\frac{n\pi}{2}} = 2^n e^{i\frac{n\pi}{2}} \] \[ (1-i)^{2n} = (\sqrt{2})^{2n} e^{-i\frac{n\pi}{2}} = 2^n e^{-i\frac{n\pi}{2}} \] Adding these gives: \[ (1-i)^{2n} + (1+i)^{2n} = 2^n \left( e^{-i\frac{n\pi}{2}} + e^{i\frac{n\pi}{2}} \right) = 2^n \cdot 2 \cos\left(\frac{n\pi}{2}\right) \] ### Step 7: Substitute back into the expression Now substituting back, we get: \[ \frac{1}{2^n} \cdot 2^n \cdot 2 \cos\left(\frac{n\pi}{2}\right) = 2 \cos\left(\frac{n\pi}{2}\right) \] ### Final Result Thus, the final result is: \[ 2 \cos\left(\frac{n\pi}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

i ^n+i ^(n+1)+i ^(n+2)+i ^(n+3) (n∈N) is equal to

Let i=sqrt(-1) Define a sequence of complex number by z_1=0, z_(n+1) = (z_n)^2 + i for n>=1 . In the complex plane, how far from the origin is z_111 ?

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If the point representing the complex number z_alpha is a point on or inside the circle having centre (0+i0) and radius alpha then maximum value of |z_1+z_2+……+z_n|= (A) (n(n+3))/2 (B) (n(n+1))/2 (C) (n(n-1))/2 (D) none of these

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i^5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  2. If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , ...

    Text Solution

    |

  3. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  4. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  5. The square roots of 7+24i are

    Text Solution

    |

  6. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |

  7. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  8. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  9. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  10. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  11. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  12. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  13. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  14. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  15. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  16. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  17. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  18. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  19. The product of all n^(th) root of unity is always

    Text Solution

    |

  20. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |