Home
Class 12
MATHS
The square roots of 7+24i are...

The square roots of `7+24i` are

A

`pm (3 + 4i)`

B

`pm (3 +-4i)`

C

`pm (4 + 3i)`

D

`pm (4 - 3i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square roots of the complex number \( 7 + 24i \), we will follow these steps: ### Step 1: Assume the square root Let the square root of \( 7 + 24i \) be represented as \( x + yi \), where \( x \) and \( y \) are real numbers. ### Step 2: Square both sides Squaring both sides gives us: \[ (x + yi)^2 = 7 + 24i \] Expanding the left side: \[ x^2 + 2xyi - y^2 = 7 + 24i \] This can be rewritten as: \[ (x^2 - y^2) + (2xy)i = 7 + 24i \] ### Step 3: Equate real and imaginary parts From the above equation, we can equate the real and imaginary parts: 1. \( x^2 - y^2 = 7 \) (Equation 1) 2. \( 2xy = 24 \) (Equation 2) ### Step 4: Solve for \( y \) in terms of \( x \) From Equation 2: \[ xy = 12 \implies y = \frac{12}{x} \] ### Step 5: Substitute \( y \) in Equation 1 Substituting \( y \) in Equation 1: \[ x^2 - \left(\frac{12}{x}\right)^2 = 7 \] This simplifies to: \[ x^2 - \frac{144}{x^2} = 7 \] Multiplying through by \( x^2 \) to eliminate the fraction: \[ x^4 - 144 = 7x^2 \] Rearranging gives: \[ x^4 - 7x^2 - 144 = 0 \] ### Step 6: Let \( z = x^2 \) Let \( z = x^2 \). Then we have: \[ z^2 - 7z - 144 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot (-144)}}{2 \cdot 1} \] Calculating the discriminant: \[ = \frac{7 \pm \sqrt{49 + 576}}{2} = \frac{7 \pm \sqrt{625}}{2} = \frac{7 \pm 25}{2} \] This gives us: \[ z = \frac{32}{2} = 16 \quad \text{or} \quad z = \frac{-18}{2} = -9 \] Since \( z = x^2 \), we discard \( z = -9 \) and take \( z = 16 \). ### Step 8: Find \( x \) Thus, \( x^2 = 16 \) implies: \[ x = 4 \quad \text{or} \quad x = -4 \] ### Step 9: Find \( y \) Using \( y = \frac{12}{x} \): - If \( x = 4 \), then \( y = \frac{12}{4} = 3 \). - If \( x = -4 \), then \( y = \frac{12}{-4} = -3 \). ### Step 10: Write the square roots Thus, the square roots of \( 7 + 24i \) are: \[ 4 + 3i \quad \text{and} \quad -4 - 3i \] ### Final Answer The square roots of \( 7 + 24i \) are \( 4 + 3i \) and \( -4 - 3i \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The square root of -8i is

Find the square root of 7"-" 24 i

The square roots of - 2 + 2 sqrt(3)i are :

Find the square root of 24.729 correct to two places of decimal.

Write the values of the square root of -i .

Find the square root of 7.832 corret to : (i) 2 decimal places (ii) 2 significant digits.

Find the square root of -7-24i

Find the square root of 3/7 correct to four places of decimal.

Find the square roots of : 4ab - 2i( a^(2) - b^(2))

Find the number of digits in the square roots of each of the following perfect squares : (I)390625 (ii) 1758276 (iii) 152399025

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The complex number 2^n/(1+i)^(2n)+(1+i)^(2n)/2^n , n epsilon I is equa...

    Text Solution

    |

  2. If z1=9y^2-4-10 i x ,z2=8y^2-20 i ,w h e r ez1=( z )2, then find z=x+...

    Text Solution

    |

  3. The square roots of 7+24i are

    Text Solution

    |

  4. If omega is a complex cube root of unity then (1-omega+omega^2)(1-omeg...

    Text Solution

    |

  5. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  6. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  7. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  8. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  9. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  10. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  11. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  12. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  13. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  14. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  15. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  16. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  17. The product of all n^(th) root of unity is always

    Text Solution

    |

  18. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  19. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  20. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |