Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity then `(1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)`

A

12

B

14

C

16

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 - \omega + \omega^2)(1 - \omega^2 + \omega^4)(1 - \omega^4 + \omega^8)(1 - \omega^8 + \omega^{16}) \] where \(\omega\) is a complex cube root of unity. We know that: 1. \(\omega^3 = 1\) 2. \(1 + \omega + \omega^2 = 0\) ### Step 1: Simplifying Each Factor **First Factor:** \[ 1 - \omega + \omega^2 = 1 + \omega^2 - \omega = 1 + \omega^2 - \omega \] Using \(1 + \omega + \omega^2 = 0\), we can rewrite this as: \[ 1 - \omega + \omega^2 = -\omega \] **Second Factor:** \[ 1 - \omega^2 + \omega^4 \] Since \(\omega^4 = \omega\) (because \(\omega^4 = \omega^{3+1} = \omega\)), we have: \[ 1 - \omega^2 + \omega = 1 + \omega - \omega^2 \] Again using \(1 + \omega + \omega^2 = 0\): \[ 1 - \omega^2 + \omega = -\omega^2 \] **Third Factor:** \[ 1 - \omega^4 + \omega^8 \] Since \(\omega^4 = \omega\) and \(\omega^8 = \omega^2\): \[ 1 - \omega + \omega^2 = -\omega \] **Fourth Factor:** \[ 1 - \omega^8 + \omega^{16} \] Since \(\omega^8 = \omega^2\) and \(\omega^{16} = \omega\): \[ 1 - \omega^2 + \omega = -\omega^2 \] ### Step 2: Putting It All Together Now substituting back into the original expression: \[ (-\omega)(-\omega^2)(-\omega)(-\omega^2) \] This simplifies to: \[ \omega^2 \cdot \omega^4 = \omega^6 \] ### Step 3: Evaluating \(\omega^6\) Since \(\omega^3 = 1\): \[ \omega^6 = (\omega^3)^2 = 1^2 = 1 \] ### Final Result Thus, the value of the expression is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a cube root of unity, then 1+omega = …..

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega is a cube root of unity, then omega^(3) = ……