Home
Class 12
MATHS
The value of (4(cos75^(@) + isin 75^(@)...

The value of `(4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(@)))` is :

A

`10/sqrt(20 ( 1 + i)`

B

`10/sqrt(2) ( 1- i)`

C

`5/sqrt(2) ( 1 _ i)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{4(\cos 75^\circ + i \sin 75^\circ)}{0.4(\cos 30^\circ + i \sin 30^\circ)}\), we can follow these steps: ### Step 1: Rewrite the expression using Euler's formula Using Euler's formula, we can express the trigonometric functions in terms of exponentials: \[ \cos \theta + i \sin \theta = e^{i\theta} \] Thus, we can rewrite the expression as: \[ \frac{4 e^{i 75^\circ}}{0.4 e^{i 30^\circ}} \] ### Step 2: Simplify the coefficients We can simplify the coefficients in the expression: \[ \frac{4}{0.4} = \frac{4 \times 10}{4} = 10 \] So, the expression now becomes: \[ 10 \cdot \frac{e^{i 75^\circ}}{e^{i 30^\circ}} \] ### Step 3: Simplify the exponential terms Using the property of exponents, we can subtract the angles: \[ \frac{e^{i 75^\circ}}{e^{i 30^\circ}} = e^{i(75^\circ - 30^\circ)} = e^{i 45^\circ} \] Thus, the expression simplifies to: \[ 10 e^{i 45^\circ} \] ### Step 4: Convert back to trigonometric form Now, we can convert \(e^{i 45^\circ}\) back to trigonometric form: \[ e^{i 45^\circ} = \cos 45^\circ + i \sin 45^\circ \] So, we have: \[ 10(\cos 45^\circ + i \sin 45^\circ) \] ### Step 5: Substitute the values of cosine and sine We know that: \[ \cos 45^\circ = \frac{1}{\sqrt{2}} \quad \text{and} \quad \sin 45^\circ = \frac{1}{\sqrt{2}} \] Substituting these values gives: \[ 10\left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}\right) = 10 \cdot \frac{1}{\sqrt{2}} (1 + i) \] ### Step 6: Final simplification We can factor out \(10/\sqrt{2}\): \[ \frac{10}{\sqrt{2}}(1 + i) \] ### Conclusion Thus, the final value of the expression is: \[ \frac{10}{\sqrt{2}}(1 + i) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos 75^@

The value of 2 sin 15^(@).cos75^(@)

Find the value of: sin75^(0)

The valiue of sin60^(@) cos 30^(@) + sin 30^(@)cos 60^(@) is ______.

(sin 75^(@) - sin 15 ^(@))/( cos 75^(@) + cos 15 ^(@)) = (1)/(sqrt3)

Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + isin 45^(@)))=A + Bi , find the values of A and B.

Find the value of : (i) sin 30^(@)-cos 60^(@) (ii) sin 0^(@)+cos 0^(@)

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@)

Find the value of x, if : cos x = cos 60^(@) cos 30^(@) + sin 60^(@) sin 30^(@)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If zr=cos(pi/(3r))+isin(pi/(3r)),r=1,2,3, , prove that z1z2z3 zoo=idot

    Text Solution

    |

  2. If omega is a complex cube roots of unity, then find the value of the...

    Text Solution

    |

  3. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  4. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  5. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  6. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  7. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  8. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  9. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  10. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  11. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  12. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  13. The product of all n^(th) root of unity is always

    Text Solution

    |

  14. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  15. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  16. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |

  17. The product of cube roots of –1 is equal :

    Text Solution

    |

  18. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  19. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  20. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |