Home
Class 12
MATHS
if (1+i)z=(1-i)barz then z is...

if `(1+i)z=(1-i)barz` then `z` is

A

`t ( 1- i)t, in R `

B

`t ( 1+ i)r, in R `

C

`t/(1+i),tin R ^(+) `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((1+i)z = (1-i)\bar{z}\), we will follow these steps: ### Step 1: Express \(z\) in terms of its real and imaginary parts Let \(z = a + bi\), where \(a\) and \(b\) are real numbers. The conjugate of \(z\) is given by \(\bar{z} = a - bi\). ### Step 2: Substitute \(z\) and \(\bar{z}\) into the equation Substituting \(z\) and \(\bar{z}\) into the equation, we have: \[ (1+i)(a+bi) = (1-i)(a-bi) \] ### Step 3: Expand both sides Now, we will expand both sides of the equation: - Left-hand side: \[ (1+i)(a+bi) = a + ai + bi + b(i^2) = a + ai + bi - b = (a-b) + (a+b)i \] - Right-hand side: \[ (1-i)(a-bi) = a - ai - bi + b(i^2) = a - ai - bi - b = (a-b) - (a+b)i \] ### Step 4: Set the real and imaginary parts equal Now we equate the real and imaginary parts from both sides: 1. Real part: \(a - b = a - b\) (This is always true) 2. Imaginary part: \(a + b = -(a + b)\) ### Step 5: Solve the imaginary part equation From the imaginary part equation: \[ a + b = -(a + b) \] This simplifies to: \[ a + b + a + b = 0 \implies 2(a + b) = 0 \implies a + b = 0 \] Thus, we can express \(b\) in terms of \(a\): \[ b = -a \] ### Step 6: Write \(z\) in terms of \(a\) Substituting \(b = -a\) back into the expression for \(z\): \[ z = a + bi = a - ai = a(1 - i) \] ### Step 7: General solution Since \(a\) can be any real number, we can express \(z\) as: \[ z = t(1 - i) \quad \text{where } t \in \mathbb{R} \] ### Conclusion Thus, the solution to the equation \((1+i)z = (1-i)\bar{z}\) is: \[ z = t(1 - i) \quad \text{for any real number } t \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If (1+i)z = (1-i)barz, "then show that "z = -ibarz.

If (1+i)z=(1-i) barz , then show that z=-i barz dot

If z = barz then z lies on

If z= 1/((1+i)(1-2i)) , then |z| is

Prove that |(z-1)/(1-barz)|=1 where z is as complex number.

If Z is a complex number the radius of z bar z - ( 2+3i)z - (2-3i)barz + 9 =0 is equal to

If z=((1+i)/(1-i)), then z^4 equals to

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

If z = (1-i)/(1+i) then z^(4) equals

Find the radius and centre of the circle z bar(z) + (1-i) z + (1+ i) bar(z)- 7 = 0

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The value of (4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(...

    Text Solution

    |

  2. If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

    Text Solution

    |

  3. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  4. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  5. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  6. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  7. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  8. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  9. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  10. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  11. The product of all n^(th) root of unity is always

    Text Solution

    |

  12. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  13. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  14. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |

  15. The product of cube roots of –1 is equal :

    Text Solution

    |

  16. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  17. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  18. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  19. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  20. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |