Home
Class 12
MATHS
If x^2-x+1=0 then the value of sum[n=1]^...

If `x^2-x+1=0` then the value of `sum_[n=1]^[5][x^n+1/x^n]^2` is:

A

8

B

10

C

12

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - x + 1 = 0 \) and find the value of \( \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \), we can follow these steps: ### Step 1: Find the roots of the equation The roots of the quadratic equation \( x^2 - x + 1 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 \): \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm i\sqrt{3}}{2} \] Thus, the roots are: \[ x_1 = \frac{1 + i\sqrt{3}}{2}, \quad x_2 = \frac{1 - i\sqrt{3}}{2} \] ### Step 2: Calculate \( x^n + \frac{1}{x^n} \) Using the property of complex numbers, we can express \( x^n + \frac{1}{x^n} \) in terms of \( x \): \[ x^n + \frac{1}{x^n} = 2 \cos\left( n \theta \right) \] where \( \theta \) is the argument of \( x \). For our roots, we can find \( \theta \) as follows: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we have: \[ x^n + \frac{1}{x^n} = 2 \cos\left( n \frac{\pi}{3} \right) \] ### Step 3: Calculate \( \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \) Now we need to compute: \[ \sum_{n=1}^{5} \left( 2 \cos\left( n \frac{\pi}{3} \right) \right)^2 = 4 \sum_{n=1}^{5} \cos^2\left( n \frac{\pi}{3} \right) \] Calculating \( \cos^2\left( n \frac{\pi}{3} \right) \) for \( n = 1, 2, 3, 4, 5 \): - \( n = 1: \cos^2\left( \frac{\pi}{3} \right) = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \) - \( n = 2: \cos^2\left( \frac{2\pi}{3} \right) = \left( -\frac{1}{2} \right)^2 = \frac{1}{4} \) - \( n = 3: \cos^2\left( \frac{3\pi}{3} \right) = \cos^2(\pi) = 1 \) - \( n = 4: \cos^2\left( \frac{4\pi}{3} \right) = \left( -\frac{1}{2} \right)^2 = \frac{1}{4} \) - \( n = 5: \cos^2\left( \frac{5\pi}{3} \right) = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \) Now, summing these values: \[ \sum_{n=1}^{5} \cos^2\left( n \frac{\pi}{3} \right) = \frac{1}{4} + \frac{1}{4} + 1 + \frac{1}{4} + \frac{1}{4} = \frac{5}{4} + 1 = \frac{9}{4} \] ### Step 4: Final calculation Now substituting back: \[ 4 \sum_{n=1}^{5} \cos^2\left( n \frac{\pi}{3} \right) = 4 \cdot \frac{9}{4} = 9 \] ### Conclusion Thus, the value of \( \sum_{n=1}^{5} \left( x^n + \frac{1}{x^n} \right)^2 \) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If x^2-2xcos theta+1=0 , then the value of x^(2n)-2x^n cosntheta+1, n in N is equal to

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

Let f(x)=(x+x^2+...+x^n-n)/(x-1), g(x)=(4^n+5^n)^(1/n) and alpha and beta are the roots of equation lim_(x rarr 1) f(x)= lim_(n rarr oo) g(x) then the value of sum_(n=0)^oo (1/alpha+1/beta)^n is

Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100 f(n) is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If barx is the mean of n observations x_(1),x_(2),x_(3)……x_(n) , then the value of sum_(i=1)^(n)(x_(i)-barx) is (i) -1 (ii) 0 (iii) 1 (iv) n-1

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. if (1+i)z=(1-i)barz then z is

    Text Solution

    |

  2. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  3. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  4. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  5. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  6. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  7. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  8. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  9. The product of all n^(th) root of unity is always

    Text Solution

    |

  10. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  11. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  12. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |

  13. The product of cube roots of –1 is equal :

    Text Solution

    |

  14. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  15. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  16. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  17. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  18. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |

  19. Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/...

    Text Solution

    |

  20. Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

    Text Solution

    |