Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then `((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4))` is equal to

A

0 if n is even

B

0 for all ` n in Z`

C

`2^(n-1) cdot I ` for all `n in N`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{(1+i)^{2n} - (1-i)^{2n}}{(1 + \omega^4 - \omega^2)(1 - \omega^4 + \omega^4)} \] where \(\omega\) is a complex cube root of unity. ### Step 1: Simplify the numerator First, we simplify the numerator \((1+i)^{2n} - (1-i)^{2n}\). Using the binomial theorem, we can express \((1+i)^{2n}\) and \((1-i)^{2n}\): \[ (1+i)^{2n} = (1^2 + i^2)^{n} = (2i)^{n} = 2^n i^n \] \[ (1-i)^{2n} = (1^2 + (-i)^2)^{n} = (2(-i))^{n} = 2^n (-i)^n \] Thus, the numerator becomes: \[ (1+i)^{2n} - (1-i)^{2n} = 2^n i^n - 2^n (-i)^n = 2^n (i^n - (-i)^n) \] ### Step 2: Analyze \(i^n - (-i)^n\) We know that: - If \(n\) is even, \(i^n = (-i)^n\) and thus \(i^n - (-i)^n = 0\). - If \(n\) is odd, \(i^n = -(-i)^n\) and thus \(i^n - (-i)^n = 2i^n\). So we can rewrite the numerator as: \[ \text{Numerator} = \begin{cases} 0 & \text{if } n \text{ is even} \\ 2^{n+1} i^{n} & \text{if } n \text{ is odd} \end{cases} \] ### Step 3: Simplify the denominator Now, we simplify the denominator \((1 + \omega^4 - \omega^2)(1 - \omega^4 + \omega^4)\). Since \(\omega^3 = 1\), we have \(\omega^4 = \omega\). Thus, the denominator simplifies to: \[ (1 + \omega - \omega^2)(1 - \omega + \omega) \] The second part simplifies to \(1\): \[ 1 - \omega + \omega = 1 \] Now, we focus on the first part: \[ 1 + \omega - \omega^2 \] Using the property of cube roots of unity, we know that \(1 + \omega + \omega^2 = 0\), which implies: \[ \omega + \omega^2 = -1 \implies 1 + \omega - \omega^2 = 1 + \omega + 1 = 2 + \omega \] Thus, the denominator simplifies to: \[ 2 + \omega \] ### Step 4: Final expression Now we can write the entire expression: \[ \frac{2^n (i^n - (-i)^n)}{(2 + \omega)} \] ### Step 5: Evaluate for specific values of \(n\) 1. **If \(n\) is even**: The numerator is \(0\), hence the entire expression is \(0\). 2. **If \(n\) is odd**: The numerator is \(2^{n+1} i^{n}\), and we can evaluate it further depending on the value of \(n\). ### Conclusion The expression evaluates to \(0\) for all even \(n\) and a non-zero value for odd \(n\). Therefore, the answer is: \[ \text{The expression is } 0 \text{ for even } n. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then 1+omega = …..

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega is a complex cube root of unity, then value of expression cos[{(1-omega)(1-omega^2) +...+(10-omega) (10-omega^2)}pi/900]

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If arg ( z - 1) = arg (z + 3i), then find x - 1 : y, where z = x + iy ...

    Text Solution

    |

  2. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  3. If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))...

    Text Solution

    |

  4. If the fourth roots of unity are z1, z2, z3, z4 and z1^2+z2^2+z3^2+z4^...

    Text Solution

    |

  5. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  6. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  7. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  8. The product of all n^(th) root of unity is always

    Text Solution

    |

  9. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  10. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  11. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |

  12. The product of cube roots of –1 is equal :

    Text Solution

    |

  13. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  14. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  15. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  16. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  17. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |

  18. Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/...

    Text Solution

    |

  19. Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

    Text Solution

    |

  20. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |