Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then value of expression `cos[{(1-omega)(1-omega^2) +...+(10-omega) (10-omega^2)}pi/900]`

A

`-1`

B

0

C

1

D

`sqrt(3//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \cos\left[\frac{(1-\omega)(1-\omega^2) + (2-\omega)(2-\omega^2) + \ldots + (10-\omega)(10-\omega^2)}{900}\pi\right] \] where \(\omega\) is a complex cube root of unity. ### Step 1: Understanding the properties of \(\omega\) The complex cube roots of unity satisfy the following properties: - \(1 + \omega + \omega^2 = 0\) - \(\omega^3 = 1\) From the first property, we can express \(\omega + \omega^2 = -1\). ### Step 2: Simplifying the expression We can rewrite each term in the summation: \[ (a - \omega)(a - \omega^2) = a^2 - (a(\omega + \omega^2)) + \omega \cdot \omega^2 \] Using the properties of \(\omega\): - \(\omega \cdot \omega^2 = \omega^3 = 1\) - \(\omega + \omega^2 = -1\) Thus, we have: \[ (a - \omega)(a - \omega^2) = a^2 + a + 1 \] ### Step 3: Summing the terms from 1 to 10 Now we need to sum this expression for \(a\) from 1 to 10: \[ \sum_{a=1}^{10} (a^2 + a + 1) \] This can be separated into three sums: \[ \sum_{a=1}^{10} a^2 + \sum_{a=1}^{10} a + \sum_{a=1}^{10} 1 \] ### Step 4: Calculating the individual sums 1. **Sum of squares**: \[ \sum_{a=1}^{n} a^2 = \frac{n(n+1)(2n+1)}{6} \] For \(n = 10\): \[ \sum_{a=1}^{10} a^2 = \frac{10(11)(21)}{6} = 385 \] 2. **Sum of first \(n\) natural numbers**: \[ \sum_{a=1}^{n} a = \frac{n(n+1)}{2} \] For \(n = 10\): \[ \sum_{a=1}^{10} a = \frac{10(11)}{2} = 55 \] 3. **Sum of 1's**: \[ \sum_{a=1}^{10} 1 = 10 \] ### Step 5: Combining the sums Now we combine the sums: \[ \sum_{a=1}^{10} (a^2 + a + 1) = 385 + 55 + 10 = 450 \] ### Step 6: Plugging into the cosine expression Now we substitute back into our cosine expression: \[ \cos\left[\frac{450\pi}{900}\right] = \cos\left[\frac{\pi}{2}\right] \] ### Step 7: Evaluating the cosine We know that: \[ \cos\left[\frac{\pi}{2}\right] = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a complex cube root of unity, then arg (iomega) + "arg" (iomega^(2))=

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  2. The angle that the vector representing the complex number 1/(sqrt3-i)...

    Text Solution

    |

  3. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  4. The product of all n^(th) root of unity is always

    Text Solution

    |

  5. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  6. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  7. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |

  8. The product of cube roots of –1 is equal :

    Text Solution

    |

  9. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  10. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  11. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  12. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  13. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |

  14. Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/...

    Text Solution

    |

  15. Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

    Text Solution

    |

  16. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  17. (1+2i+3i^2)/(1-2i+3i^2) equals i b. -i c. -1 d. 4

    Text Solution

    |

  18. If sqrt(3)+i=(a+i b)//(c+i d) , then find the value of tan^(-1)(b//a)t...

    Text Solution

    |

  19. If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0, then

    Text Solution

    |

  20. If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6...

    Text Solution

    |