Home
Class 12
MATHS
If alpha is nonreal and alpha= (1)^(1/5)...

If `alpha` is nonreal and `alpha= (1)^(1/5)` then the find the value of `2^(|1+alpha+alpha^2+alpha^-2-alpha^-1|)`

A

4

B

2

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2^{|1 + \alpha + \alpha^2 + \alpha^{-2} - \alpha^{-1}|} \) given that \( \alpha \) is a non-real fifth root of unity. ### Step-by-step Solution: 1. **Understanding Alpha**: Since \( \alpha = 1^{1/5} \), we recognize that \( \alpha \) is a fifth root of unity. The fifth roots of unity are given by: \[ \alpha_k = e^{2\pi ik/5} \quad \text{for } k = 0, 1, 2, 3, 4 \] Here, \( \alpha \) is non-real, so we can take \( \alpha = e^{2\pi i/5} \) (one of the non-real roots). 2. **Using the Property of Roots of Unity**: The sum of all fifth roots of unity is zero: \[ 1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 = 0 \] Therefore, we can express \( \alpha^3 + \alpha^4 \) as: \[ \alpha^3 + \alpha^4 = - (1 + \alpha + \alpha^2) \] 3. **Finding \( \alpha^{-1} \) and \( \alpha^{-2} \)**: The inverse of \( \alpha \) can be expressed as: \[ \alpha^{-1} = e^{-2\pi i/5} = \alpha^4 \] Similarly, \[ \alpha^{-2} = e^{-4\pi i/5} = \alpha^3 \] 4. **Substituting Values**: Now, substituting these into the expression \( 1 + \alpha + \alpha^2 + \alpha^{-2} - \alpha^{-1} \): \[ 1 + \alpha + \alpha^2 + \alpha^3 - \alpha^4 \] We can rearrange this as: \[ 1 + \alpha + \alpha^2 + (-1 - \alpha - \alpha^2) = 0 \] 5. **Calculating the Modulus**: Thus, we have: \[ |1 + \alpha + \alpha^2 + \alpha^{-2} - \alpha^{-1}| = |0| = 0 \] 6. **Final Calculation**: Now we substitute this back into the expression we need to evaluate: \[ 2^{|1 + \alpha + \alpha^2 + \alpha^{-2} - \alpha^{-1}|} = 2^0 = 1 \] ### Conclusion: The value of \( 2^{|1 + \alpha + \alpha^2 + \alpha^{-2} - \alpha^{-1}|} \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If alpha is a non-real fifth root of unity, then the value of 3^(|1+alpha+alpha^(2),alpha^(-2)-alpha^(-1)| , is

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

If alpha is a non-real cube root of -2 , then the value of |(1,2 alpha,1),(alpha^(2),1,3 alpha^(2)),(2,2 alpha,1)| , is

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If alpha be a root of equation x^2+x+1=0 then find the vlaue of (alpha+ 1/alpha)+(alpha^2+1/alpha^2)^2+(alpha^3+1/alpha^3)^2+…+(alpha^6+1/alpha^6)^2

If alpha is root of equation f(x)=0 then the value of (alpha+ 1/alpha)^2+(alpha^2+ 1/alpha^2)^2+(alpha^3+1/alpha^3)+………+(alpha^6+ 1/alpha^6)^2 is (A) 18 (B) 54 (C) 6 (D) 12

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

If the roots of equation x^3+a x^2+b=0a r ealpha_1,alpha_2 and alpha_3(a ,b!=0) , then find the equation whose roots are (alpha_1alpha_2+alpha_2alpha_3)/(alpha_1alpha_2alpha_3),(alpha_2alpha_3+alpha_3alpha_1)/(alpha_1alpha_2alpha_3),(alpha_1alpha_3+alpha_1alpha_2)/(alpha_1alpha_2alpha_3)

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If omega is a complex cube root of unity, then value of expression cos...

    Text Solution

    |

  2. The product of all n^(th) root of unity is always

    Text Solution

    |

  3. If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2...

    Text Solution

    |

  4. If alpha and beta are the roots of the equation x^(2) + x+ 1 = 0, the...

    Text Solution

    |

  5. The value of i^(1+ 3+5.....+(2n +1)) is .

    Text Solution

    |

  6. The product of cube roots of –1 is equal :

    Text Solution

    |

  7. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  8. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  11. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |

  12. Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/...

    Text Solution

    |

  13. Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

    Text Solution

    |

  14. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  15. (1+2i+3i^2)/(1-2i+3i^2) equals i b. -i c. -1 d. 4

    Text Solution

    |

  16. If sqrt(3)+i=(a+i b)//(c+i d) , then find the value of tan^(-1)(b//a)t...

    Text Solution

    |

  17. If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0, then

    Text Solution

    |

  18. If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6...

    Text Solution

    |

  19. If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)^n=(...

    Text Solution

    |

  20. Prove that x^(3p) + x^(3q+1) + x^(3r+2) is exactly divisible by x^2+x+...

    Text Solution

    |