Home
Class 12
MATHS
If omega is a cube root of unity then fi...

If `omega` is a cube root of unity then find the value of `sin((omega^(10)+omega^(23))pi -pi/4)`

A

`- sqrt( 3 )/2`

B

`-1/sqrt(2)`

C

`1/sqrt(2)`

D

`sqrt(3) / 2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin(\omega^{10} + \omega^{23})\pi - \frac{\pi}{4} \), where \( \omega \) is a cube root of unity. ### Step-by-Step Solution: 1. **Understanding Cube Roots of Unity**: The cube roots of unity are the solutions to the equation \( x^3 = 1 \). They are given by: \[ 1, \quad \omega = e^{2\pi i / 3}, \quad \omega^2 = e^{4\pi i / 3} \] where \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). 2. **Finding \( \omega^{10} \)**: Since \( \omega^3 = 1 \), we can reduce the exponent modulo 3: \[ 10 \mod 3 = 1 \quad \Rightarrow \quad \omega^{10} = \omega^1 = \omega \] 3. **Finding \( \omega^{23} \)**: Similarly, for \( \omega^{23} \): \[ 23 \mod 3 = 2 \quad \Rightarrow \quad \omega^{23} = \omega^2 \] 4. **Calculating \( \omega^{10} + \omega^{23} \)**: Now we can add the two results: \[ \omega^{10} + \omega^{23} = \omega + \omega^2 \] 5. **Using the Property of Cube Roots**: From the property \( 1 + \omega + \omega^2 = 0 \), we can express \( \omega + \omega^2 \): \[ \omega + \omega^2 = -1 \] 6. **Substituting into the Sine Function**: Now we substitute back into the sine function: \[ \sin((\omega + \omega^2)\pi - \frac{\pi}{4}) = \sin(-\pi - \frac{\pi}{4}) \] 7. **Simplifying the Argument**: We can simplify the argument of the sine function: \[ -\pi - \frac{\pi}{4} = -\frac{4\pi}{4} - \frac{\pi}{4} = -\frac{5\pi}{4} \] 8. **Using the Sine Function Properties**: We know that \( \sin(-\theta) = -\sin(\theta) \): \[ \sin(-\frac{5\pi}{4}) = -\sin(\frac{5\pi}{4}) \] 9. **Finding \( \sin(\frac{5\pi}{4}) \)**: The angle \( \frac{5\pi}{4} \) is in the third quadrant where sine is negative: \[ \sin(\frac{5\pi}{4}) = -\frac{1}{\sqrt{2}} \quad \Rightarrow \quad -\sin(\frac{5\pi}{4}) = \frac{1}{\sqrt{2}} \] 10. **Final Result**: Therefore, the final value is: \[ \sin(\omega^{10} + \omega^{23})\pi - \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] ### Conclusion: The value of \( \sin(\omega^{10} + \omega^{23})\pi - \frac{\pi}{4} \) is \( \frac{1}{\sqrt{2}} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is an imaginary cube root of unity, then find the value of (1+omega)(1+omega^2)(1+omega^3)(1+omega^4)(1+omega^5)........(1+omega^(3n))=

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

If 1 , omega, omega^(2) are cube roots of unity then the value of (5+2omega +5omega^(2))^(3) is

If omega!=1 is a cube root of unity, then find the value of |[1+2omega^100+omega^200,omega^2,1],[1,1+omega^100+2omega^200,omega],[omega,omega^2,2+omega^100+omega^200]|

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The product of cube roots of –1 is equal :

    Text Solution

    |

  2. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  3. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  4. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  5. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  6. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |

  7. Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/...

    Text Solution

    |

  8. Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

    Text Solution

    |

  9. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  10. (1+2i+3i^2)/(1-2i+3i^2) equals i b. -i c. -1 d. 4

    Text Solution

    |

  11. If sqrt(3)+i=(a+i b)//(c+i d) , then find the value of tan^(-1)(b//a)t...

    Text Solution

    |

  12. If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0, then

    Text Solution

    |

  13. If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6...

    Text Solution

    |

  14. If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)^n=(...

    Text Solution

    |

  15. Prove that x^(3p) + x^(3q+1) + x^(3r+2) is exactly divisible by x^2+x+...

    Text Solution

    |

  16. If z= x + yi and omega = ((1- zi))/(z-i), then |omega|=1 implies that ...

    Text Solution

    |

  17. The locus of z which satisfies the inequality log (0.3) abs(z-1) gt l...

    Text Solution

    |

  18. The set of points in an Argand diagram which satisfy both abs(z)le4 an...

    Text Solution

    |

  19. If the points represented by complex numbers z(1)=a+ib, z(2)=c+id " an...

    Text Solution

    |

  20. For x(1), x(2), y(1), y(2) in R if 0 lt x(1)lt x(2)lt y(1) = y(2)...

    Text Solution

    |