Home
Class 12
MATHS
Evaluate: sqrt(-2+2sqrt(3)i)...

Evaluate: `sqrt(-2+2sqrt(3)i)`

A

`pm (1+ sqrt(3)i)`

B

`pm (1- sqrt(3)i)`

C

`pm (-1+ sqrt(3)i)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sqrt{-2 + 2\sqrt{3}i} \), we will assume that it can be expressed in the form \( a + bi \), where \( a \) and \( b \) are real numbers. ### Step 1: Set up the equation Assume: \[ \sqrt{-2 + 2\sqrt{3}i} = a + bi \] ### Step 2: Square both sides Squaring both sides gives: \[ -2 + 2\sqrt{3}i = (a + bi)^2 \] Expanding the right side: \[ (a + bi)^2 = a^2 + 2abi - b^2 = (a^2 - b^2) + (2ab)i \] Thus, we have: \[ -2 + 2\sqrt{3}i = (a^2 - b^2) + (2ab)i \] ### Step 3: Equate real and imaginary parts From the equation, we can equate the real and imaginary parts: 1. \( a^2 - b^2 = -2 \) (Real part) 2. \( 2ab = 2\sqrt{3} \) (Imaginary part) ### Step 4: Simplify the equations From the second equation: \[ ab = \sqrt{3} \] Now we can express \( a \) in terms of \( b \): \[ a = \frac{\sqrt{3}}{b} \] ### Step 5: Substitute into the first equation Substituting \( a \) into the first equation: \[ \left(\frac{\sqrt{3}}{b}\right)^2 - b^2 = -2 \] This simplifies to: \[ \frac{3}{b^2} - b^2 = -2 \] Multiplying through by \( b^2 \) to eliminate the fraction: \[ 3 - b^4 = -2b^2 \] Rearranging gives: \[ b^4 - 2b^2 - 3 = 0 \] ### Step 6: Let \( x = b^2 \) Let \( x = b^2 \), then we have a quadratic equation: \[ x^2 - 2x - 3 = 0 \] ### Step 7: Factor the quadratic Factoring gives: \[ (x - 3)(x + 1) = 0 \] Thus, \( x = 3 \) or \( x = -1 \). Since \( x = b^2 \) must be non-negative, we have: \[ b^2 = 3 \implies b = \pm \sqrt{3} \] ### Step 8: Find \( a \) Using \( b = \sqrt{3} \): \[ a = \frac{\sqrt{3}}{\sqrt{3}} = 1 \] Using \( b = -\sqrt{3} \): \[ a = \frac{\sqrt{3}}{-\sqrt{3}} = -1 \] ### Step 9: Write the final result Thus, we have two possible values for \( \sqrt{-2 + 2\sqrt{3}i} \): \[ \sqrt{-2 + 2\sqrt{3}i} = 1 + \sqrt{3}i \quad \text{or} \quad -1 - \sqrt{3}i \] ### Final Answer The final answer is: \[ \sqrt{-2 + 2\sqrt{3}i} = \pm (1 + \sqrt{3}i) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i)sqrt(3-2sqrt(2))" "(ii)sqrt(9+6sqrt(2))

Evaluate (sqrt(3)-sqrt(2))^6+(sqrt(3)+sqrt(2))^6dot

Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

evaluate sqrt(-2+2sqrt(-2+2sqrt(-2+..............oo))

If both a\ a n d\ b are rational numbers, find the values of a\ a n d\ b in each of the following equalities: (sqrt(2)+\ sqrt(3))/(3sqrt(2\ )-\ 2sqrt(3))=a-b\ sqrt(6)

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

Find (a+b)^4-(a-b)^4 . Hence, evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4 .

Express each of the following in the form a+i b :(-sqrt(3)+\ sqrt(-2))(2sqrt(3)-i)

Evaluate: (i) int(sec^2sqrt(x))/(sqrt(x))\ dx (ii) inttan^3 2xsec2x\ dx

Find the sum and product of the complex numbers -sqrt(3)+sqrt(-2) and 2sqrt(3)-i

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  2. The argument of (1-isqrt(3))/(1+isqrt(3)) is 60^0 b. 120^0 c. 210^0 d....

    Text Solution

    |

  3. Evaluate: sqrt(-2+2sqrt(3)i)

    Text Solution

    |

  4. Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/...

    Text Solution

    |

  5. Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

    Text Solution

    |

  6. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  7. (1+2i+3i^2)/(1-2i+3i^2) equals i b. -i c. -1 d. 4

    Text Solution

    |

  8. If sqrt(3)+i=(a+i b)//(c+i d) , then find the value of tan^(-1)(b//a)t...

    Text Solution

    |

  9. If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0, then

    Text Solution

    |

  10. If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6...

    Text Solution

    |

  11. If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)^n=(...

    Text Solution

    |

  12. Prove that x^(3p) + x^(3q+1) + x^(3r+2) is exactly divisible by x^2+x+...

    Text Solution

    |

  13. If z= x + yi and omega = ((1- zi))/(z-i), then |omega|=1 implies that ...

    Text Solution

    |

  14. The locus of z which satisfies the inequality log (0.3) abs(z-1) gt l...

    Text Solution

    |

  15. The set of points in an Argand diagram which satisfy both abs(z)le4 an...

    Text Solution

    |

  16. If the points represented by complex numbers z(1)=a+ib, z(2)=c+id " an...

    Text Solution

    |

  17. For x(1), x(2), y(1), y(2) in R if 0 lt x(1)lt x(2)lt y(1) = y(2)...

    Text Solution

    |

  18. If alpha,betaandgamma are the cube roots of P(p)lt0), then for any x, ...

    Text Solution

    |

  19. If z(1) , z(2), z(3) are three complex numbers in A.P., then they lie ...

    Text Solution

    |

  20. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |