Home
Class 12
MATHS
If omega is a complex cube root of unit...

If `omega` is a complex cube root of unity, then `(1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=`

A

0

B

32

C

64

D

128

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6\), where \(\omega\) is a complex cube root of unity. ### Step 1: Understand the properties of \(\omega\) The complex cube roots of unity satisfy the equation: \[ 1 + \omega + \omega^2 = 0 \] From this, we can derive: \[ \omega^2 = -1 - \omega \quad \text{and} \quad \omega = -1 - \omega^2 \] ### Step 2: Simplify the first term Let's simplify \(1 - \omega + \omega^2\): \[ 1 - \omega + \omega^2 = 1 - \omega + (-1 - \omega) = 1 - \omega - 1 - \omega = -2\omega \] ### Step 3: Simplify the second term Now simplify \(1 - \omega^2 + \omega\): \[ 1 - \omega^2 + \omega = 1 - (-1 - \omega) + \omega = 1 + 1 + \omega + \omega = 2 + 2\omega \] ### Step 4: Raise both terms to the power of 6 Now we have: \[ (1 - \omega + \omega^2)^6 = (-2\omega)^6 = (-2)^6 \cdot \omega^6 \] Since \(\omega^3 = 1\), we have \(\omega^6 = (\omega^3)^2 = 1^2 = 1\). Therefore: \[ (-2\omega)^6 = 64 \] For the second term: \[ (1 - \omega^2 + \omega)^6 = (2 + 2\omega)^6 = 2^6(1 + \omega)^6 \] Using \(1 + \omega = -\omega^2\): \[ (1 + \omega)^6 = (-\omega^2)^6 = (\omega^2)^6 = 1 \] Thus: \[ (2 + 2\omega)^6 = 64 \] ### Step 5: Combine the results Now we can combine the two results: \[ (1 - \omega + \omega^2)^6 + (1 - \omega^2 + \omega)^6 = 64 + 64 = 128 \] ### Final Answer Therefore, the final answer is: \[ \boxed{128} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a complex cube root of unity, then arg (iomega) + "arg" (iomega^(2))=

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega be a complex cube root of unity, then the number (1-omega-omega^2)^3+(omega-1-omega^2)^3+(omega^2-omega-1)^3 is: a. Divisible by 3 but not by 8 b. Divisible by 8 but not by 3 c. Divisible by both 3 & 8 d. none of these

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a cube root of unity, then 1+omega = …..

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If omega is a cube root of unity, then omega^(3) = ……

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If sqrt(3)+i=(a+i b)//(c+i d) , then find the value of tan^(-1)(b//a)t...

    Text Solution

    |

  2. If |z(1)|=|z(2)|andamp(z(1))+amp(z(2))=0, then

    Text Solution

    |

  3. If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6...

    Text Solution

    |

  4. If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)^n=(...

    Text Solution

    |

  5. Prove that x^(3p) + x^(3q+1) + x^(3r+2) is exactly divisible by x^2+x+...

    Text Solution

    |

  6. If z= x + yi and omega = ((1- zi))/(z-i), then |omega|=1 implies that ...

    Text Solution

    |

  7. The locus of z which satisfies the inequality log (0.3) abs(z-1) gt l...

    Text Solution

    |

  8. The set of points in an Argand diagram which satisfy both abs(z)le4 an...

    Text Solution

    |

  9. If the points represented by complex numbers z(1)=a+ib, z(2)=c+id " an...

    Text Solution

    |

  10. For x(1), x(2), y(1), y(2) in R if 0 lt x(1)lt x(2)lt y(1) = y(2)...

    Text Solution

    |

  11. If alpha,betaandgamma are the cube roots of P(p)lt0), then for any x, ...

    Text Solution

    |

  12. If z(1) , z(2), z(3) are three complex numbers in A.P., then they lie ...

    Text Solution

    |

  13. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  16. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  17. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  18. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  19. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  20. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |