Home
Class 12
MATHS
For x(1), x(2), y(1), y(2) in R if 0 l...

For `x_(1), x_(2), y_(1), y_(2) in R ` if `0 lt x_(1)lt x_(2)lt y_(1) = y_(2)` and `z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2)` and `z_(3) = (z_(1) + z_(2))//2,`then ` z_(1) , z_(2) , z_(3)` satisfy :

A

`abs(z_(1)) = abs( z_(2) ) = abs(z_(3))`

B

`abs(z_(1)) lt abs( z_(2) ) lt abs(z_(3))`

C

`abs(z_(1)) gt abs( z_(2) ) gt abs(z_(3))`

D

`abs(z_(1)) lt abs( z_(3) ) lt abs(z_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the complex numbers \( z_1, z_2, \) and \( z_3 \) based on the given conditions. ### Step 1: Define the complex numbers We have: - \( z_1 = x_1 + i y_1 \) - \( z_2 = x_2 + i y_2 \) - \( z_3 = \frac{z_1 + z_2}{2} = \frac{(x_1 + x_2) + i(y_1 + y_2)}{2} \) ### Step 2: Calculate the moduli of \( z_1 \), \( z_2 \), and \( z_3 \) The modulus of a complex number \( z = a + ib \) is given by \( |z| = \sqrt{a^2 + b^2} \). - For \( z_1 \): \[ |z_1| = \sqrt{x_1^2 + y_1^2} \] - For \( z_2 \): \[ |z_2| = \sqrt{x_2^2 + y_2^2} \] - For \( z_3 \): \[ |z_3| = \left| \frac{z_1 + z_2}{2} \right| = \frac{|z_1 + z_2|}{2} \] To find \( |z_1 + z_2| \): \[ |z_1 + z_2| = |(x_1 + x_2) + i(y_1 + y_2)| = \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2} \] Therefore, \[ |z_3| = \frac{1}{2} \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2} \] ### Step 3: Analyze the conditions Given that \( 0 < x_1 < x_2 < y_1 = y_2 \): - Since \( y_1 = y_2 \), we can denote \( y_1 = y_2 = y \). Thus: - \( |z_1| = \sqrt{x_1^2 + y^2} \) - \( |z_2| = \sqrt{x_2^2 + y^2} \) - \( |z_3| = \frac{1}{2} \sqrt{(x_1 + x_2)^2 + 2y^2} \) ### Step 4: Compare the moduli Since \( x_1 < x_2 \), we know: - \( x_1^2 < x_2^2 \) - Therefore, \( |z_1| < |z_2| \). Next, we will compare \( |z_3| \) with \( |z_1| \) and \( |z_2| \). 1. **Comparing \( |z_1| \) and \( |z_3| \)**: \[ |z_3| = \frac{1}{2} \sqrt{(x_1 + x_2)^2 + 2y^2} \] Since \( x_1 < x_2 \), it follows that: \[ |z_3| > |z_1| \quad \text{(as the average of the real parts is greater than the smaller real part)} \] 2. **Comparing \( |z_2| \) and \( |z_3| \)**: \[ |z_3| < |z_2| \quad \text{(as the average of the real parts is less than the larger real part)} \] ### Conclusion From the above comparisons, we conclude: \[ |z_1| < |z_3| < |z_2| \] ### Final Answer Thus, the relationship that \( z_1, z_2, z_3 \) satisfy is: \[ |z_1| < |z_3| < |z_2| \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If x_(1) = 3y_(1) + 2y_(2) -y_(3), " " y_(1)=z_(1) - z_(2) + z_(3) x_(2) = -y_(1) + 4y_(2) + 5y_(3), y_(2)= z_(2) + 3z_(3) x_( 3)= y_(1) -y_(2) + 3y_(3)," " y_(3) = 2z_(1) + z_(2) espress x_(1), x_(2), x_(3) in terms of z_(1) ,z_(2),z_(3) .

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)| lt |z_(1)| + |z_(2)|

The value of |(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))| , is

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

If |z_(1)-1|lt 1,|z_(2)-2|lt 2,|z_(3)-3|lt 3 , then |z_(1)+z_(2)+z_(3)|

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If A = {x_(!) , y_(1), z_(1)} and B = {x_(2), y_(2)} , then the number of relations from A to B is

If z= x + yi and |2z + 1| = |z- 2i| , show that 3(x^(2) + y^(2)) + 4(x-y)=3

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

Let Z_(1)=x_(1)+iy_(1) , Z_(2)=x_(2)+iy_(2) be complex numbers in fourth quadrant of argand plane and |Z_(1)|=|Z_(2)|=1 , Ref(Z_(1)Z_(2))=0 . The complex numbers Z_(3)=x_(1)+ix_(2) , Z_(4)=y_(1)+iy_(2) , Z_(5)=x_(1)+iy_(2) , Z_(6)=x_(6)+iy , will always satisfy

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. The set of points in an Argand diagram which satisfy both abs(z)le4 an...

    Text Solution

    |

  2. If the points represented by complex numbers z(1)=a+ib, z(2)=c+id " an...

    Text Solution

    |

  3. For x(1), x(2), y(1), y(2) in R if 0 lt x(1)lt x(2)lt y(1) = y(2)...

    Text Solution

    |

  4. If alpha,betaandgamma are the cube roots of P(p)lt0), then for any x, ...

    Text Solution

    |

  5. If z(1) , z(2), z(3) are three complex numbers in A.P., then they lie ...

    Text Solution

    |

  6. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  9. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  10. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  11. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  12. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  13. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  14. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  15. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  19. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  20. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |