Home
Class 12
MATHS
If z= costheta+isintheta , then the valu...

If `z= costheta+isintheta` , then the value of `(z^(2n)-1)/(z^(2n)+1)` (A) `i tan n theta` (B) ` tan n theta` (C) `icot n theta` (D) `-i tan n theta`

A

`icot n theta`

B

`I tan n theta`

C

`tan n theta`

D

`cot n theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for \( z \): \[ z = \cos \theta + i \sin \theta \] We need to find the value of: \[ \frac{z^{2n} - 1}{z^{2n} + 1} \] ### Step 1: Express \( z^{2n} \) Using Euler's formula, we can express \( z \) in exponential form: \[ z = e^{i\theta} \] Thus, we have: \[ z^{2n} = (e^{i\theta})^{2n} = e^{i(2n\theta)} = \cos(2n\theta) + i \sin(2n\theta) \] ### Step 2: Substitute \( z^{2n} \) into the expression Now substituting \( z^{2n} \) into the expression we need to evaluate: \[ \frac{z^{2n} - 1}{z^{2n} + 1} = \frac{(\cos(2n\theta) + i \sin(2n\theta)) - 1}{(\cos(2n\theta) + i \sin(2n\theta)) + 1} \] ### Step 3: Simplify the numerator and denominator The numerator simplifies to: \[ \cos(2n\theta) - 1 + i \sin(2n\theta) \] The denominator simplifies to: \[ \cos(2n\theta) + 1 + i \sin(2n\theta) \] ### Step 4: Factor out the common terms Now, we can factor out the common terms from the numerator and denominator. We can rewrite the numerator as: \[ (\cos(2n\theta) - 1) + i \sin(2n\theta) \] And the denominator as: \[ (\cos(2n\theta) + 1) + i \sin(2n\theta) \] ### Step 5: Use trigonometric identities Using the identity \( \cos(2n\theta) = 2\cos^2(n\theta) - 1 \) and \( \sin(2n\theta) = 2\sin(n\theta)\cos(n\theta) \), we can rewrite: - \( \cos(2n\theta) - 1 = 2\cos^2(n\theta) - 2 = 2(\cos^2(n\theta) - 1) = -2\sin^2(n\theta) \) - \( \cos(2n\theta) + 1 = 2\cos^2(n\theta) \) ### Step 6: Substitute back into the expression Now substituting these back into our expression, we have: \[ \frac{-2\sin^2(n\theta) + i(2\sin(n\theta)\cos(n\theta))}{2\cos^2(n\theta) + i(2\sin(n\theta)\cos(n\theta))} \] ### Step 7: Simplify further Dividing both the numerator and denominator by 2 gives: \[ \frac{-\sin^2(n\theta) + i\sin(n\theta)\cos(n\theta)}{\cos^2(n\theta) + i\sin(n\theta)\cos(n\theta)} \] ### Step 8: Multiply by the conjugate To simplify this, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(-\sin^2(n\theta) + i\sin(n\theta)\cos(n\theta))(\cos^2(n\theta) - i\sin(n\theta)\cos(n\theta))}{(\cos^2(n\theta) + i\sin(n\theta)\cos(n\theta))(\cos^2(n\theta) - i\sin(n\theta)\cos(n\theta))} \] ### Step 9: Final simplification After simplification, we find that: \[ \frac{i \tan(n\theta)}{1} = i \tan(n\theta) \] Thus, the final result is: \[ \frac{z^{2n} - 1}{z^{2n} + 1} = i \tan(n\theta) \] ### Conclusion The correct answer is: **(A) \( i \tan n \theta \)**
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

If the equation a cos 2 theta +b sin 2 theta = c had theta _(1), theta _(2) as its roots, prove that (i) tan theta_(1) + tan theta_(2) ""=( 2b)/(c +a) (ii) tan theta _(1) tan theta _(2) ="" ( c -a)/( c +a )

If a=costheta+isintheta, then (1+a)/(1-a) is: (a) . cot(theta/2) (b) . cottheta (c) . icot(theta/2) (d) . itan(theta/2)

For m ne n , if "tan" m theta = "tan" n theta , then different values of theta are in

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

A general solution of tan^(2) theta+ cos 2 theta=1 is (n in Z)

For theta_(1), theta_(2), ...., theta_(n) in (0, pi/2) , if In (sec theta_(1)-tan theta_(1))+ "In" (sec theta_(2)-tan theta_(2))+...+"In" (sec theta_(n)-tan theta_(n))+ "ln" pi=0 , then the value of cos((sec theta_(1)+ tan theta_(1))(sec theta_(2)+tan theta_(2))....(sec theta_(n)+tan theta_(n))) is equal to

If m tan (theta - 30^(@))= n tan (theta + 120^(@)), show that cos 2 theta = (m +n)/(2 (m -n)).

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |