Home
Class 12
MATHS
If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z...

If `z=-2+2sqrt(3)i,` then `z^(2n)+2^(2n)*z^n+2^(4n)` is equal to

A

0

B

`-1`

C

1

D

`3xx 2^(4n)` if n is multiply of 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( z^{2n} + 2^{2n} z^n + 2^{4n} \) where \( z = -2 + 2\sqrt{3}i \). ### Step 1: Convert \( z \) to Polar Form First, we need to express \( z \) in polar form. We can write \( z \) as: \[ z = -2 + 2\sqrt{3}i \] To convert this to polar form, we calculate the modulus \( r \) and the argument \( \theta \). The modulus \( r \) is given by: \[ r = |z| = \sqrt{(-2)^2 + (2\sqrt{3})^2} = \sqrt{4 + 12} = \sqrt{16} = 4 \] Next, we find the argument \( \theta \): \[ \theta = \tan^{-1}\left(\frac{2\sqrt{3}}{-2}\right) = \tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \quad (\text{since } z \text{ is in the second quadrant}) \] Thus, we can express \( z \) in polar form as: \[ z = 4 \left( \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} \right) = 4 e^{i \frac{2\pi}{3}} \] ### Step 2: Calculate \( z^{2n} \) Now, we calculate \( z^{2n} \): \[ z^{2n} = (4 e^{i \frac{2\pi}{3}})^{2n} = 4^{2n} e^{i \frac{4\pi n}{3}} = 16^n e^{i \frac{4\pi n}{3}} \] ### Step 3: Calculate \( 2^{2n} z^n \) Next, we calculate \( 2^{2n} z^n \): \[ z^n = (4 e^{i \frac{2\pi}{3}})^n = 4^n e^{i \frac{2\pi n}{3}} = 2^{2n} e^{i \frac{2\pi n}{3}} \] Thus, \[ 2^{2n} z^n = 2^{2n} \cdot 2^{2n} e^{i \frac{2\pi n}{3}} = 4^{n} e^{i \frac{2\pi n}{3}} \] ### Step 4: Calculate \( 2^{4n} \) Now, we calculate \( 2^{4n} \): \[ 2^{4n} = 4^{2n} \] ### Step 5: Combine All Parts Now we can combine all parts: \[ z^{2n} + 2^{2n} z^n + 2^{4n} = 16^n e^{i \frac{4\pi n}{3}} + 4^n e^{i \frac{2\pi n}{3}} + 4^{n} \] ### Step 6: Factor Out Common Terms We can factor out \( 4^{n} \): \[ = 4^{n} \left( 4^n e^{i \frac{4\pi n}{3}} + e^{i \frac{2\pi n}{3}} + 1 \right) \] ### Step 7: Evaluate the Expression Now, we need to evaluate \( 4^n e^{i \frac{4\pi n}{3}} + e^{i \frac{2\pi n}{3}} + 1 \). Using the properties of complex exponentials: - If \( n \) is a multiple of 3, \( e^{i \frac{2\pi n}{3}} = 1 \) and \( e^{i \frac{4\pi n}{3}} = 1 \) as well. Thus, we have: \[ 4^n (4^n + 1 + 1) = 4^n (4^n + 2) \] ### Final Result Thus, the final result is: \[ z^{2n} + 2^{2n} z^n + 2^{4n} = 3 \cdot 2^{4n} \quad \text{(if \( n \) is a multiple of 3)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where "r=1,2,3,...,nandi=sqrt(-1),"then. "lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z)) is equal to :

If x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx then (dy)/(dx) is equal to : (where c and n are constants) :

If z and bar z represent adjacent vertices of a regular polygon of n sides where centre is origin and if (Im(z))/(Re(z)) = sqrt(2) - 1 , then n is equal to:

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |