Home
Class 12
MATHS
if Im((z+2i)/(z+2))= 0 then z lies on t...

if `Im((z+2i)/(z+2))= 0` then z lies on the curve :

A

`x^(2) + y^(2) + 2 x + 2y = 0`

B

`x^(2) + y^(2) - 2 x = 0`

C

`x + y + 2 =0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the curve on which the complex number \( z \) lies, given that \( \text{Im}\left(\frac{z + 2i}{z + 2}\right) = 0 \), we can follow these steps: ### Step 1: Substitute \( z \) Assume \( z = x + iy \), where \( x \) and \( y \) are real numbers. ### Step 2: Rewrite the expression Now, substitute \( z \) into the expression: \[ \frac{z + 2i}{z + 2} = \frac{(x + iy) + 2i}{(x + iy) + 2} = \frac{x + i(y + 2)}{(x + 2) + iy} \] ### Step 3: Rationalize the denominator To find the imaginary part, we need to rationalize the denominator. Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{x + i(y + 2)}{(x + 2) + iy} \cdot \frac{(x + 2) - iy}{(x + 2) - iy} \] ### Step 4: Multiply out the numerator The numerator becomes: \[ (x + i(y + 2))((x + 2) - iy) = x(x + 2) + 2i + y^2 + 2y - ixy - 2y \] This simplifies to: \[ x(x + 2) + 2y + 2i - xy \] ### Step 5: Multiply out the denominator The denominator becomes: \[ (x + 2)^2 + y^2 \] ### Step 6: Write the full expression Now we can write the full expression: \[ \frac{x(x + 2) + 2y + 2i - xy}{(x + 2)^2 + y^2} \] ### Step 7: Identify the imaginary part The imaginary part of the expression is: \[ \text{Im}\left(\frac{x(x + 2) + 2y - xy + 2i}{(x + 2)^2 + y^2}\right) = \frac{2 + 2y - xy}{(x + 2)^2 + y^2} \] ### Step 8: Set the imaginary part to zero Since we are given that the imaginary part is equal to zero: \[ 2 + 2y - xy = 0 \] ### Step 9: Rearranging the equation Rearranging gives: \[ xy - 2y - 2 = 0 \] ### Step 10: Factor the equation We can factor this equation: \[ y(x - 2) = 2 \] ### Conclusion Thus, the equation \( y(x - 2) = 2 \) describes the curve on which \( z \) lies. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If "Re"((z-8i)/(z+6))=0 , then z lies on the curve

If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

If "Im"(2z+1)/(iz+1)=-2 , then locus of z, is

If |3z-1|=3|z-2|, then z lies on

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If |z+barz|+|z-barz|=2 , then z lies on

If Im((iz+2)/(z+i))=-1 represents part of a circle with radius r units, then the value of 4r^(2) is (where, z in C, z ne i,lm(z) represents the imaginary part of z and i^(2)=-1 )

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |