Home
Class 12
MATHS
If for the complex numbers z1 and z2, ...

If for the complex numbers `z_1` and `z_2`, `|z_1+z_2|=|z_1-z_2|`, then `Arg(z_1)-Arg(z_2)` is equal to

A

`pi`

B

`pi//2`

C

`pi//4`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{Arg}(z_1) - \text{Arg}(z_2) \) given that \( |z_1 + z_2| = |z_1 - z_2| \). ### Step-by-Step Solution: 1. **Understanding the Condition**: We start with the condition \( |z_1 + z_2| = |z_1 - z_2| \). This means that the distance from the origin to the point representing \( z_1 + z_2 \) is equal to the distance to the point representing \( z_1 - z_2 \). 2. **Expressing Complex Numbers**: Let \( z_1 = a + ib \) and \( z_2 = x + iy \), where \( a, b, x, y \) are real numbers. 3. **Applying the Modulus Condition**: The modulus condition can be expressed as: \[ |(a + x) + i(b + y)| = |(a - x) + i(b - y)| \] This translates to: \[ \sqrt{(a + x)^2 + (b + y)^2} = \sqrt{(a - x)^2 + (b - y)^2} \] 4. **Squaring Both Sides**: Squaring both sides gives: \[ (a + x)^2 + (b + y)^2 = (a - x)^2 + (b - y)^2 \] 5. **Expanding Both Sides**: Expanding both sides results in: \[ a^2 + 2ax + x^2 + b^2 + 2by + y^2 = a^2 - 2ax + x^2 + b^2 - 2by + y^2 \] 6. **Simplifying the Equation**: Canceling out common terms, we have: \[ 2ax + 2by = -2ax - 2by \] This simplifies to: \[ 4ax + 4by = 0 \quad \Rightarrow \quad ax + by = 0 \] 7. **Finding the Ratio**: From \( ax + by = 0 \), we can express this as: \[ \frac{a}{b} = -\frac{y}{x} \] 8. **Finding Arguments**: The argument of a complex number \( z \) can be expressed as: \[ \text{Arg}(z_1) = \tan^{-1}\left(\frac{b}{a}\right), \quad \text{Arg}(z_2) = \tan^{-1}\left(\frac{y}{x}\right) \] 9. **Substituting the Ratio**: We substitute \( \frac{y}{x} = -\frac{a}{b} \) into the expression for \( \text{Arg}(z_2) \): \[ \text{Arg}(z_2) = \tan^{-1}\left(-\frac{a}{b}\right) \] 10. **Calculating the Difference**: Now we find: \[ \text{Arg}(z_1) - \text{Arg}(z_2) = \tan^{-1}\left(\frac{b}{a}\right) - \tan^{-1}\left(-\frac{a}{b}\right) \] 11. **Using the Tangent Addition Formula**: Using the formula \( \tan^{-1}(u) - \tan^{-1}(v) = \tan^{-1}\left(\frac{u - v}{1 + uv}\right) \): \[ \text{Arg}(z_1) - \text{Arg}(z_2) = \tan^{-1}\left(\frac{\frac{b}{a} + \frac{a}{b}}{1 - \frac{b}{a} \cdot \frac{a}{b}}\right) \] 12. **Simplifying the Expression**: This simplifies to: \[ = \tan^{-1}\left(\frac{\frac{b^2 + a^2}{ab}}{1 - 1}\right) = \tan^{-1}(\infty) = \frac{\pi}{2} \] ### Final Result: Thus, we conclude that: \[ \text{Arg}(z_1) - \text{Arg}(z_2) = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If for complex numbers z_1 and z_2 and |1-bar(z_1)z_2|^2-|z_1-z_2|^2=k(1-|z_1|^2)(1-|z_2|^2) then k is equal to:

If for complex numbers z_1 and z_2 and |1-bar(z_1)z_2|^2-|z_1-z_2|^2=k(1-|z_1|^2)(1-|z_2|^2) then k is equal to:

For any two complex number z_1a n d\ z_2 prove that: |z_1+z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|lt=|z_1|+|z_2|

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If for complex numbers z_1 and z_2 , arg(z_1) - arg(z_2)=0 , then show that |z_1-z_2| = | |z_1|-|z_2| |

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |