Home
Class 12
MATHS
If z = x + iotay and amp((z-1)/(z+1)) = ...

If `z = x + iotay` and `amp((z-1)/(z+1)) = pi/3` , then locus of z is

A

a straight line

B

a circle

C

a pair of lines

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( z = x + i y \) and \( \text{amp}\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3} \), we will follow these steps: ### Step 1: Express the given condition in terms of \( z \) We start with the expression: \[ \text{amp}\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3} \] This can be rewritten using the property of amplitude: \[ \text{amp}(a/b) = \text{amp}(a) - \text{amp}(b) \] Thus, we have: \[ \text{amp}(z-1) - \text{amp}(z+1) = \frac{\pi}{3} \] ### Step 2: Substitute \( z = x + i y \) Substituting \( z \) into the expression gives: \[ \text{amp}((x - 1) + i y) - \text{amp}((x + 1) + i y) = \frac{\pi}{3} \] ### Step 3: Calculate the amplitudes The amplitude of a complex number \( a + ib \) is given by: \[ \text{amp}(a + ib) = \tan^{-1}\left(\frac{b}{a}\right) \] Thus, we can express the amplitudes: \[ \text{amp}(z-1) = \tan^{-1}\left(\frac{y}{x-1}\right) \] \[ \text{amp}(z+1) = \tan^{-1}\left(\frac{y}{x+1}\right) \] ### Step 4: Set up the equation Now substituting these into our equation gives: \[ \tan^{-1}\left(\frac{y}{x-1}\right) - \tan^{-1}\left(\frac{y}{x+1}\right) = \frac{\pi}{3} \] ### Step 5: Use the tangent subtraction formula Using the formula for the difference of two arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] we set: \[ a = \frac{y}{x-1}, \quad b = \frac{y}{x+1} \] Thus: \[ \tan^{-1}\left(\frac{\frac{y}{x-1} - \frac{y}{x+1}}{1 + \frac{y}{x-1} \cdot \frac{y}{x+1}}\right) = \frac{\pi}{3} \] ### Step 6: Simplify the expression Calculating \( a - b \): \[ \frac{y}{x-1} - \frac{y}{x+1} = y\left(\frac{1}{x-1} - \frac{1}{x+1}\right) = y\left(\frac{(x+1) - (x-1)}{(x-1)(x+1)}\right) = \frac{2y}{(x-1)(x+1)} \] Calculating \( 1 + ab \): \[ 1 + \frac{y^2}{(x-1)(x+1)} = 1 + \frac{y^2}{x^2 - 1} \] ### Step 7: Set the equation equal to \( \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \) Setting the left-hand side equal to \( \sqrt{3} \): \[ \frac{\frac{2y}{(x-1)(x+1)}}{1 + \frac{y^2}{x^2 - 1}} = \sqrt{3} \] ### Step 8: Cross-multiply and simplify Cross-multiplying gives: \[ 2y = \sqrt{3}\left(1 + \frac{y^2}{x^2 - 1}\right)(x^2 - 1) \] This leads to: \[ 2y = \sqrt{3}(x^2 - 1) + \frac{\sqrt{3}y^2}{x^2 - 1}(x^2 - 1) \] ### Step 9: Rearranging to find the locus Rearranging terms leads to: \[ x^2 + y^2 - 2\sqrt{3}y - 1 = 0 \] This is the equation of a circle. ### Final Answer The locus of \( z \) is a circle.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If Imz((z-1)/(2z+1))=-4 , then locus of z is

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

If "Im"(2z+1)/(iz+1)=-2 , then locus of z, is

If z=x+iy and real part ((z-1)/(2z+i))=1 then locus of z is

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

Statement-1: If z_(1),z_(2) are affixes of two fixed points A and B in the Argand plane and P(z) is a variable point such that "arg" (z-z_(1))/(z-z_(2))=pi/2 , then the locus of z is a circle having z_(1) and z_(2) as the end-points of a diameter. Statement-2 : arg (z_(2)-z_(1))/(z_(1)-z) = angleAPB

z is such that a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3 then locus z is

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |