Home
Class 12
MATHS
If pi/2 < alpha < 3pi/2 then the modulus...

If `pi/2` < `alpha` < `3pi`/2 then the modulus argument of `(1+cos 2alpha)+i sin2alpha`

A

`-2cosalpha(cos(pi+alpha)+isin(pi+alpha))`

B

`2cosalpha(cosalpha+isinalpha)`

C

`2cosalpha(cos(-alpha)+isin(-alpha)`

D

`-2cosalpha(cos(pi-alpha)+isin(pi-alpha))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the complex number \( z = (1 + \cos 2\alpha) + i \sin 2\alpha \) given that \( \frac{\pi}{2} < \alpha < \frac{3\pi}{2} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ z = (1 + \cos 2\alpha) + i \sin 2\alpha \] ### Step 2: Use trigonometric identities Using the double angle identities: \[ \cos 2\alpha = 2\cos^2 \alpha - 1 \quad \text{or} \quad \cos 2\alpha = 1 - 2\sin^2 \alpha \] We can rewrite \( 1 + \cos 2\alpha \): \[ 1 + \cos 2\alpha = 1 + (2\cos^2 \alpha - 1) = 2\cos^2 \alpha \] Thus, we can express \( z \) as: \[ z = 2\cos^2 \alpha + i \sin 2\alpha \] ### Step 3: Rewrite \( \sin 2\alpha \) Using the double angle identity for sine: \[ \sin 2\alpha = 2\sin \alpha \cos \alpha \] Now we can write: \[ z = 2\cos^2 \alpha + i(2\sin \alpha \cos \alpha) \] ### Step 4: Factor out common terms We can factor out \( 2\cos \alpha \): \[ z = 2\cos \alpha (\cos \alpha + i \sin \alpha) \] Recognizing that \( \cos \alpha + i \sin \alpha = e^{i\alpha} \), we can write: \[ z = 2\cos \alpha \cdot e^{i\alpha} \] ### Step 5: Find the modulus The modulus of \( z \) is given by: \[ |z| = |2\cos \alpha| \cdot |e^{i\alpha}| = 2|\cos \alpha| \cdot 1 = 2|\cos \alpha| \] ### Step 6: Find the argument The argument of \( z \) is: \[ \arg(z) = \arg(2\cos \alpha) + \arg(e^{i\alpha}) = \arg(2\cos \alpha) + \alpha \] Since \( 2\cos \alpha \) is real and its sign depends on \( \alpha \): - If \( \frac{\pi}{2} < \alpha < \frac{3\pi}{2} \), then \( \cos \alpha < 0 \) and thus \( \arg(2\cos \alpha) = \pi \). Therefore, the argument becomes: \[ \arg(z) = \pi + \alpha \] ### Final Result Thus, the modulus and argument of \( z \) are: \[ |z| = 2|\cos \alpha| \quad \text{and} \quad \arg(z) = \pi + \alpha \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The smallest positive root of the equation tanx-x=0 lies in (0,pi/2) (b) (pi/2,pi) (pi,(3pi)/2) (d) ((3pi)/2,2pi)

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

int_0^pi(xtanx)/(secx+cosx)dxi s (a) (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

1.The inverse of cosine function is defined in the intervals (A) [ -pi , 0 ] (B) [ -pi/2,0 ] (C) [ 0,pi/2 ] (D) [ pi/2 , pi ]

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |