Home
Class 12
MATHS
If a=cos""(4pi)/(3)+isin""(4pi)/(3), the...

If `a=cos""(4pi)/(3)+isin""(4pi)/(3)`, then the value of `((1+a)/(2))^(3n)` is :

A

`(-1)^(n)`

B

`(-1)^(n)/(2^(3n))`

C

`(1)/(2^(3n))`

D

`(-1)^(n)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given for \( a \): \[ a = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \] ### Step 1: Rewrite \( a \) using the properties of trigonometric functions We can express \( a \) in terms of \( \cos \) and \( \sin \) of \( \frac{4\pi}{3} \): \[ \cos\left(\frac{4\pi}{3}\right) = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2} \] \[ \sin\left(\frac{4\pi}{3}\right) = \sin\left(\pi + \frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] Thus, we have: \[ a = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \] ### Step 2: Calculate \( 1 + a \) Now, we need to calculate \( 1 + a \): \[ 1 + a = 1 - \frac{1}{2} - i \frac{\sqrt{3}}{2} = \frac{1}{2} - i \frac{\sqrt{3}}{2} \] ### Step 3: Divide by 2 Next, we find \( \frac{1 + a}{2} \): \[ \frac{1 + a}{2} = \frac{\frac{1}{2} - i \frac{\sqrt{3}}{2}}{2} = \frac{1}{4} - i \frac{\sqrt{3}}{4} \] ### Step 4: Express in polar form To simplify our calculations, we express \( \frac{1 + a}{2} \) in polar form. The modulus \( r \) is given by: \[ r = \sqrt{\left(\frac{1}{4}\right)^2 + \left(-\frac{\sqrt{3}}{4}\right)^2} = \sqrt{\frac{1}{16} + \frac{3}{16}} = \sqrt{\frac{4}{16}} = \frac{1}{2} \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{-\frac{\sqrt{3}}{4}}{\frac{1}{4}}\right) = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3} \] Thus, we can write: \[ \frac{1 + a}{2} = \frac{1}{2} \left( \cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right) \right) \] ### Step 5: Raise to the power \( 3n \) Now we raise \( \frac{1 + a}{2} \) to the power \( 3n \): \[ \left(\frac{1 + a}{2}\right)^{3n} = \left(\frac{1}{2}\right)^{3n} \left( \cos\left(-\frac{3n\pi}{3}\right) + i \sin\left(-\frac{3n\pi}{3}\right) \right) \] This simplifies to: \[ \left(\frac{1}{2}\right)^{3n} \left( \cos(-n\pi) + i \sin(-n\pi) \right) \] Using the periodic properties of cosine and sine: \[ \cos(-n\pi) = (-1)^n, \quad \sin(-n\pi) = 0 \] Thus, we have: \[ \left(\frac{1 + a}{2}\right)^{3n} = \left(\frac{1}{2}\right)^{3n} (-1)^n \] ### Final Result The final result is: \[ \left(\frac{1 + a}{2}\right)^{3n} = \frac{(-1)^n}{2^{3n}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n-1) is :

If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c a

If a = b cos "" ( 2 pi)/ (3) = c cos "" (4 pi)/( 3) , then write the value of ab + bc + ca

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

The value of cos^(-1)(cos'(3pi)/(2)) is

If a=cos((4pi)/3)+isin((4pi)/3) then |(1,1,1),(1,a,a^2),(1,a^2,a)| (a) purely real (b) purely imaginary (c) 0 (d) none of these

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

The exact value of "cos"(3pi)/(4) is

If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta . Find the value of |(b)/(a)| .

Write the value of cos^(-1)(tan((3pi)/4)) .

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 1
  1. If Re ((z + 2i)/(z+4))= 0 then z lies on a circle with centre :

    Text Solution

    |

  2. If z is a complex number satisfying the relation |z+ 1|=z+2(1+i), then...

    Text Solution

    |

  3. The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

    Text Solution

    |

  4. If z= costheta+isintheta , then the value of (z^(2n)-1)/(z^(2n)+1) ...

    Text Solution

    |

  5. If f(x)=x^(4)-8x^(3)+4x^(2) +39 and f(3+2i)=a+ib then a:b equals

    Text Solution

    |

  6. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  7. If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^n+2^(4n) is equal to

    Text Solution

    |

  8. if Im((z+2i)/(z+2))= 0 then z lies on the curve :

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  12. If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of...

    Text Solution

    |

  13. If for the complex numbers z1 and z2, |z1+z2|=|z1-z2|, then Arg(z1)-...

    Text Solution

    |

  14. The complex number z(1),z(2),z(3) are the vertices A, B, C of a parall...

    Text Solution

    |

  15. If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

    Text Solution

    |

  16. If all the roots of z^3+az^2+bz+c=0 are of unit modulus, then (A) |a|l...

    Text Solution

    |

  17. If pi/2 < alpha < 3pi/2 then the modulus argument of (1+cos 2alpha)+i ...

    Text Solution

    |

  18. If a=cos""(4pi)/(3)+isin""(4pi)/(3), then the value of ((1+a)/(2))^(3n...

    Text Solution

    |

  19. Locus of the pont z satisfying the equation|z-1|+|z-1|=2, is (where,i=...

    Text Solution

    |

  20. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |