Home
Class 12
MATHS
Let a,b in R and a^(2)+b^(2) ne 0. Sup...

Let `a,b in R` and `a^(2)+b^(2) ne 0`.
Suppose `S={z in C:z=(1)/(a+ibt),t in R,t ne 0}`, where `i=sqrt(-1)`. If z=x+iy and `z in S`, then (x,y) lies on

A

the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)" for " a gt 0,b ne 0`

B

the circle with radius ` - (1)/(2a) ` and centre ` (-(1)/(2a),0) " for " a lt 0 , b ne 0 `

C

the x-axis for ` a ne 0 ,b= 0 `

D

`the y-axis for a = 0 , ` ne ` 0

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-1| =1 and arg (z)=theta , where z ne 0 and theta is acute, then (1-2/z) is equal to

Suppose cos x = 0 and cos(x+z)=1/2 . Then, the possible value (s) of z is (are).

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

Let s ,\ t ,\ r be non-zero complex numbers and L be the set of solutions z=x+i y\ \ (x ,\ y in RR,\ \ i=sqrt(-1)) of the equation s z+t z +r=0 , where z =x-i y . Then, which of the following statement(s) is (are) TRUE? If L has exactly one element, then |s|!=|t| (b) If |s|=|t| , then L has infinitely many elements (c) The number of elements in Lnn{z :|z-1+i|=5} is at most 2 (d) If L has more than one element, then L has infinitely many elements

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

VMC MODULES ENGLISH-COMPLEX NUMBERS -JEE ARCHIVE
  1. about to only mathematics

    Text Solution

    |

  2. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  3. Let a,b in R and a^(2)+b^(2) ne 0. Suppose S={z in C:z=(1)/(a+ibt),t...

    Text Solution

    |

  4. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  5. The quadratic equation p(x)=0 with real coefficients has purely imagin...

    Text Solution

    |

  6. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  7. Let a,b,x and y be real numbers such that a-b =1 and y ne 0. If the ...

    Text Solution

    |

  8. If z(1)=p+iq and z(2) = u = iv are complex numbers such that |z(1)|=...

    Text Solution

    |

  9. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  10. Let z1=10+6i and z2=4+6idot If z is any complex number such that the a...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. Find the centre and radius of the circle formed by all the points repr...

    Text Solution

    |

  13. If one of the vertices of the square circumscribing the circle abs(z-1...

    Text Solution

    |

  14. Let a complex number alpha,alpha!=1, be a rootof hte euation z^(p+q)-z...

    Text Solution

    |

  15. If x+i y=sqrt((a+i b)/(c+i d)) prove that (x^2+y^2)^2=(a^2+b^2)/(c^2+d...

    Text Solution

    |

  16. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  17. Express 1//(1-costheta+2isintheta) in the form x=i y .

    Text Solution

    |

  18. If n is n odd integer that is greater than or equal to 3 but not a mul...

    Text Solution

    |

  19. The real values of xa n dy for which the following equation is satisfi...

    Text Solution

    |

  20. Let the complex numbers z(1),z(2) and z(3) be the vertices of an equ...

    Text Solution

    |