Home
Class 12
MATHS
Let omega be a complex cube root of unit...

Let `omega` be a complex cube root of unity with `omega!=1a n dP=[p_(i j)]` be a `nxxn` matrix withe `p_(i j)=omega^(i+j)dot` Then `p^2!=O ,when=` a.`57` b. `55` c. `58` d. `56`

A

57

B

55

C

58

D

56

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If 1, omega and omega^(2) are the cube roots of unity, prove that (a+b omega+c omega^(2))/(c+a omega+b omega^(2))=omega^(2)

Let omega(omega ne 1) is a cube root of unity, such that (1+omega^(2))^(8)=a+bomega where a, b in R, then |a+b| is equal to

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If, 1, omega, omega^(2) are cube roots of unity, show that (p + qomega + r omega^(2))/(r + p omega + q omega^(2))= omega^(2)

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to 128omega (b) -128omega 128omega^2 (d) -128omega^2

If omega is a complex nth root of unity, then sum_(r=1)^n(a+b)omega^(r-1) is equal to (n(n+1)a)/2 b. (n b)/(1+n) c. (n a)/(omega-1) d. none of these

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =

VMC MODULES ENGLISH-COMPLEX NUMBERS -JEE ARCHIVE
  1. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  2. Let a,b in R and a^(2)+b^(2) ne 0. Suppose S={z in C:z=(1)/(a+ibt),t...

    Text Solution

    |

  3. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  4. The quadratic equation p(x)=0 with real coefficients has purely imagin...

    Text Solution

    |

  5. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  6. Let a,b,x and y be real numbers such that a-b =1 and y ne 0. If the ...

    Text Solution

    |

  7. If z(1)=p+iq and z(2) = u = iv are complex numbers such that |z(1)|=...

    Text Solution

    |

  8. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  9. Let z1=10+6i and z2=4+6idot If z is any complex number such that the a...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Find the centre and radius of the circle formed by all the points repr...

    Text Solution

    |

  12. If one of the vertices of the square circumscribing the circle abs(z-1...

    Text Solution

    |

  13. Let a complex number alpha,alpha!=1, be a rootof hte euation z^(p+q)-z...

    Text Solution

    |

  14. If x+i y=sqrt((a+i b)/(c+i d)) prove that (x^2+y^2)^2=(a^2+b^2)/(c^2+d...

    Text Solution

    |

  15. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  16. Express 1//(1-costheta+2isintheta) in the form x=i y .

    Text Solution

    |

  17. If n is n odd integer that is greater than or equal to 3 but not a mul...

    Text Solution

    |

  18. The real values of xa n dy for which the following equation is satisfi...

    Text Solution

    |

  19. Let the complex numbers z(1),z(2) and z(3) be the vertices of an equ...

    Text Solution

    |

  20. A relation R on set of complex numbers defined by Z(1)RZ(2) hArr (Z(1)...

    Text Solution

    |