Home
Class 12
MATHS
If i z^3+z^2-z+i=0 , where i=sqrt(-1) , ...

If `i z^3+z^2-z+i=0` , where `i=sqrt(-1)` , then `|z|` is equal to 1 (b) `1/2` (c) `1/4` (d) None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( i z^3 + z^2 - z + i = 0 \), where \( i = \sqrt{-1} \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ i z^3 + z^2 - z + i = 0 \] We can rearrange this equation to group the terms: \[ i z^3 + z^2 - z + i = 0 \] ### Step 2: Factoring the Equation Next, we can factor out common terms. We can take \( z - i \) as a common factor: \[ i z^3 + z^2 - z + i = (z - i)(i z^2 + 1) \] This gives us two factors: 1. \( z - i = 0 \) 2. \( i z^2 + 1 = 0 \) ### Step 3: Solving for \( z \) From the first factor, we have: \[ z - i = 0 \implies z = i \] From the second factor: \[ i z^2 + 1 = 0 \implies i z^2 = -1 \implies z^2 = -\frac{1}{i} \] To simplify \( -\frac{1}{i} \), we multiply the numerator and denominator by \( i \): \[ z^2 = -\frac{1}{i} \cdot \frac{i}{i} = \frac{-i}{-1} = i \] ### Step 4: Finding the Values of \( z \) Now we have two values for \( z \): 1. \( z = i \) 2. \( z^2 = i \) From \( z^2 = i \), we can find \( z \): \[ z = \sqrt{i} \] To find \( \sqrt{i} \), we express \( i \) in polar form: \[ i = e^{i \frac{\pi}{2}} \] Thus, \[ \sqrt{i} = e^{i \frac{\pi}{4}} = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \] ### Step 5: Calculating the Modulus Now we need to find \( |z| \): 1. For \( z = i \): \[ |z| = |i| = 1 \] 2. For \( z = \sqrt{i} \): \[ |z| = \left| \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} = 1 \] ### Conclusion Thus, in all cases, we find that: \[ |z| = 1 \] The correct answer is (a) \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=1/((2+3i)^2), then |z| is (a) . 1/13 (b) . 1/5 (c) . 1/12 (d) . none of these

If z=(i)^(i)^(((i)))w h e r e i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z=1/((1-i)(2+3i)), then |z| is (a) . 1 (b ). 1/sqrt(26) (c) . 5/sqrt(26) (d) . none of these

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If z=((1+i)/(1-i)), then z^4 equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

VMC MODULES ENGLISH-COMPLEX NUMBERS -JEE ARCHIVE
  1. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  2. Complex numbers z(1),z(2)andz(3) are the vertices A,B,C respectivelt o...

    Text Solution

    |

  3. If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2...

    Text Solution

    |

  4. If |z|<=1,|w|<=1, then show that |z- w|^2<=(|z|-|w|)^2+(argz-argw)^2

    Text Solution

    |

  5. Find the non-zero complex number z satisfying z =i z^2dot

    Text Solution

    |

  6. Let z1 \and\ z2 be the roots of the equation z^2+p z+q=0, where the co...

    Text Solution

    |

  7. Let barz+bbarz=c,b!=0 be a line the complex plane, where bar b is the ...

    Text Solution

    |

  8. If z(1) and z(2) are two complex numbers such that |z(1)| lt 1 lt |z...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  11. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  12. If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5, then (a)...

    Text Solution

    |

  13. Let (-2-(1)/(3)i)^(3) = (x+iy)/(27) (i=sqrt(-1)), where x and y are re...

    Text Solution

    |

  14. Let z be a complex number such that |z|+z=3+I (Where i=sqrt(-1)) T...

    Text Solution

    |

  15. If (x-alpha)/(z+alpha)(alpha in R) is a purely imaginery number and |z...

    Text Solution

    |

  16. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  17. if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ), then ( 1 + ...

    Text Solution

    |

  18. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  19. Let z in c be such that |z| lt . If omega = (5 + 3z)/(5(1 - z)), then ...

    Text Solution

    |

  20. If z = ((1+i)^(2))/(alpha-i), alpha in R has magnitude sqrt((2)/(5)) ...

    Text Solution

    |