Home
Class 12
MATHS
Let alpha and beta are roots of equation...

Let `alpha` and `beta` are roots of equation `x^(2)-x-1=0` with `alpha > beta`. For all positive integers n defines `a_(n)=(alpha^(n)-beta^(n))/(alpha-beta)` , n>1 and b=1 and `b_(n)=a_(n+1)+a_(n-1)` then

A

`sum_(n=1)^(oo) (b_(n))/(10^(n)) = (8)/(89)`

B

`b_(n) = alpha^(n) + beta^(n) ` for all ` n ge 1 `

C

` a_(1) + a_(2) + a_(3) + …+ a_(n) = a_(n+2) -1 ` for all ` n ge 1` .

D

`sum_(n=2)^(oo) (a_(n))/(10^(n)) = (10)/(89)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and derive the required results. ### Step 1: Identify the roots of the equation The roots of the equation \(x^2 - x - 1 = 0\) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = -1\), and \(c = -1\). Calculating the discriminant: \[ b^2 - 4ac = (-1)^2 - 4 \cdot 1 \cdot (-1) = 1 + 4 = 5 \] Thus, the roots are: \[ x = \frac{1 \pm \sqrt{5}}{2} \] Let \(\alpha = \frac{1 + \sqrt{5}}{2}\) and \(\beta = \frac{1 - \sqrt{5}}{2}\) with \(\alpha > \beta\). ### Step 2: Define \(a_n\) The sequence \(a_n\) is defined as: \[ a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \] for \(n > 1\). ### Step 3: Define \(b_n\) The sequence \(b_n\) is defined as: \[ b_n = a_{n+1} + a_{n-1} \] ### Step 4: Express \(a_{n+1}\) and \(a_{n-1}\) Using the definition of \(a_n\): \[ a_{n+1} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} \] \[ a_{n-1} = \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta} \] ### Step 5: Combine \(b_n\) Substituting \(a_{n+1}\) and \(a_{n-1}\) into \(b_n\): \[ b_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} + \frac{\alpha^{n-1} - \beta^{n-1}}{\alpha - \beta} \] \[ b_n = \frac{(\alpha^{n+1} + \alpha^{n-1}) - (\beta^{n+1} + \beta^{n-1})}{\alpha - \beta} \] ### Step 6: Use the recurrence relation Using the property of Fibonacci-like sequences, we can express: \[ \alpha^{n+1} = \alpha \cdot \alpha^n + \beta \cdot \alpha^{n-1} \] Thus, we can derive: \[ b_n = \alpha^n + \beta^n \] ### Step 7: Prove the summation We need to show: \[ \sum_{n=1}^{\infty} \frac{b_n}{10^n} = \frac{8}{89} \] Substituting \(b_n\): \[ \sum_{n=1}^{\infty} \frac{\alpha^n + \beta^n}{10^n} = \sum_{n=1}^{\infty} \left(\frac{\alpha}{10}\right)^n + \sum_{n=1}^{\infty} \left(\frac{\beta}{10}\right)^n \] Using the formula for the sum of a geometric series: \[ \sum_{n=1}^{\infty} x^n = \frac{x}{1-x} \] For \(\frac{\alpha}{10}\) and \(\frac{\beta}{10}\): \[ \sum_{n=1}^{\infty} \left(\frac{\alpha}{10}\right)^n = \frac{\frac{\alpha}{10}}{1 - \frac{\alpha}{10}} = \frac{\alpha}{10 - \alpha} \] \[ \sum_{n=1}^{\infty} \left(\frac{\beta}{10}\right)^n = \frac{\frac{\beta}{10}}{1 - \frac{\beta}{10}} = \frac{\beta}{10 - \beta} \] Combining these: \[ \sum_{n=1}^{\infty} b_n \cdot \frac{1}{10^n} = \frac{\alpha}{10 - \alpha} + \frac{\beta}{10 - \beta} \] ### Step 8: Final calculations Calculating the above expressions will yield the desired result of \(\frac{8}{89}\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

Let alpha and beta be the roots of the equation x^2-6x-2=0 If a_n=alpha^n-beta^n for ngt=0 then find the value of (a_10-2a_8)/(2a_9)

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

Let alpha and beta are roots of x^(2) - 17x - 6 = 0 with alpha gt beta, if a_(n) = alpha^(n+2)+beta^(n+2) for n ge 5 then the value of (a_(10)-6a_(8)-a_(9))/(a_(9))

If ""_(alpha)and _(beta) are the roots of equation x^(2)-3x+1=0and a_(n)=alpha^n+beta^(n),ninN then value of (a_(7)+a_(5))/(a_(6))=

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

If alpha and beta be the roots of the equation x^(2)-2x+2=0 , then the least value of n for which ((alpha)/(beta))^(n)=1 is:

VMC MODULES ENGLISH-COMPLEX NUMBERS -JEE ARCHIVE
  1. Let barz+bbarz=c,b!=0 be a line the complex plane, where bar b is the ...

    Text Solution

    |

  2. If z(1) and z(2) are two complex numbers such that |z(1)| lt 1 lt |z...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  5. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  6. If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5, then (a)...

    Text Solution

    |

  7. Let (-2-(1)/(3)i)^(3) = (x+iy)/(27) (i=sqrt(-1)), where x and y are re...

    Text Solution

    |

  8. Let z be a complex number such that |z|+z=3+I (Where i=sqrt(-1)) T...

    Text Solution

    |

  9. If (x-alpha)/(z+alpha)(alpha in R) is a purely imaginery number and |z...

    Text Solution

    |

  10. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  11. if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ), then ( 1 + ...

    Text Solution

    |

  12. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  13. Let z in c be such that |z| lt . If omega = (5 + 3z)/(5(1 - z)), then ...

    Text Solution

    |

  14. If z = ((1+i)^(2))/(alpha-i), alpha in R has magnitude sqrt((2)/(5)) ...

    Text Solution

    |

  15. Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=p...

    Text Solution

    |

  16. The equation |z-1|=|z+1|,i= sqrt(-1)represents =

    Text Solution

    |

  17. if (2z-n)/(2z+n)=2i-1,n in N in N and IM(z)=10, then

    Text Solution

    |

  18. if z is a complex number belonging to the set S={z:|z-2+i|gesqrt(5)} a...

    Text Solution

    |

  19. Let alpha and beta are roots of equation x^(2)-x-1=0 with alpha > bet...

    Text Solution

    |

  20. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |