Home
Class 12
MATHS
Consider alpha, beta ,gamma are the roo...

Consider `alpha, beta ,gamma` are the roots of `x^(3)-x^(2)-3x+4=0` such that `tan^(-1)alpha+tan^(-1)beta+tan^(-1)gamma=theta` . If the positive value of `tan (theta)` is p/q, where p and q are natural numbers, then find the value of `(p + q)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the roots of the polynomial equation \( x^3 - x^2 - 3x + 4 = 0 \) and then use the properties of inverse tangent to find \( \tan(\theta) \) where \( \theta = \tan^{-1}(\alpha) + \tan^{-1}(\beta) + \tan^{-1}(\gamma) \). ### Step 1: Find the roots of the polynomial The given polynomial is: \[ x^3 - x^2 - 3x + 4 = 0 \] We can use the Rational Root Theorem to test for possible rational roots. Testing \( x = 1 \): \[ 1^3 - 1^2 - 3(1) + 4 = 1 - 1 - 3 + 4 = 1 \quad (\text{not a root}) \] Testing \( x = -1 \): \[ (-1)^3 - (-1)^2 - 3(-1) + 4 = -1 - 1 + 3 + 4 = 5 \quad (\text{not a root}) \] Testing \( x = 2 \): \[ 2^3 - 2^2 - 3(2) + 4 = 8 - 4 - 6 + 4 = 2 \quad (\text{not a root}) \] Testing \( x = -2 \): \[ (-2)^3 - (-2)^2 - 3(-2) + 4 = -8 - 4 + 6 + 4 = -2 \quad (\text{not a root}) \] Testing \( x = 4 \): \[ 4^3 - 4^2 - 3(4) + 4 = 64 - 16 - 12 + 4 = 40 \quad (\text{not a root}) \] Testing \( x = -4 \): \[ (-4)^3 - (-4)^2 - 3(-4) + 4 = -64 - 16 + 12 + 4 = -64 \quad (\text{not a root}) \] After testing several values, we can use synthetic division or numerical methods to find the roots. For simplicity, let's assume we found the roots to be \( \alpha, \beta, \gamma \). ### Step 2: Use the properties of inverse tangent We know that: \[ \tan^{-1}(\alpha) + \tan^{-1}(\beta) + \tan^{-1}(\gamma) = \theta \] Using the formula for the sum of inverse tangents: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) \quad \text{if } xy < 1 \] For three variables, we can express: \[ \tan(\theta) = \frac{\alpha + \beta + \gamma - \alpha \beta \gamma}{1 - (\alpha \beta + \beta \gamma + \gamma \alpha)} \] ### Step 3: Calculate the sums and products of the roots From Vieta's formulas: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{-1}{1} = 1 \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = -\frac{-3}{1} = -3 \) - The product of the roots \( \alpha \beta \gamma = -\frac{4}{1} = -4 \) ### Step 4: Substitute into the tangent formula Now substituting these values into the tangent formula: \[ \tan(\theta) = \frac{1 - (-4)}{1 - (-3)} = \frac{1 + 4}{1 + 3} = \frac{5}{4} \] ### Step 5: Express \( \tan(\theta) \) in the form \( \frac{p}{q} \) Here, we have: \[ \tan(\theta) = \frac{5}{4} \] Thus, \( p = 5 \) and \( q = 4 \). ### Step 6: Find \( p + q \) Finally, we calculate: \[ p + q = 5 + 4 = 9 \] ### Final Answer The value of \( p + q \) is \( \boxed{9} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is