Home
Class 12
MATHS
Find the value of 4cos[cos^(-1)((1)/(4)...

Find the value of `4cos[cos^(-1)((1)/(4)(sqrt(6)-sqrt(2)))-cos^(-1)((1)/(4)(sqrt(6)+sqrt(2)))]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ 4 \cos \left[ \cos^{-1} \left( \frac{1}{4}(\sqrt{6} - \sqrt{2}) \right) - \cos^{-1} \left( \frac{1}{4}(\sqrt{6} + \sqrt{2}) \right) \right]. \] ### Step 1: Use the identity for the difference of cosines We can use the identity: \[ \cos^{-1}(x) - \cos^{-1}(y) = \cos^{-1}(xy + \sqrt{(1-x^2)(1-y^2)}) \] Let \( x = \frac{1}{4}(\sqrt{6} - \sqrt{2}) \) and \( y = \frac{1}{4}(\sqrt{6} + \sqrt{2}) \). ### Step 2: Calculate \( xy \) First, we calculate \( xy \): \[ xy = \left(\frac{1}{4}(\sqrt{6} - \sqrt{2})\right) \left(\frac{1}{4}(\sqrt{6} + \sqrt{2})\right) = \frac{1}{16} \left((\sqrt{6})^2 - (\sqrt{2})^2\right) = \frac{1}{16}(6 - 2) = \frac{4}{16} = \frac{1}{4}. \] ### Step 3: Calculate \( 1 - x^2 \) and \( 1 - y^2 \) Next, we calculate \( 1 - x^2 \) and \( 1 - y^2 \): \[ x^2 = \left(\frac{1}{4}(\sqrt{6} - \sqrt{2})\right)^2 = \frac{1}{16}(6 - 2\sqrt{12} + 2) = \frac{1}{16}(8 - 2\sqrt{12}) = \frac{1}{16}(8 - 4\sqrt{3}), \] \[ 1 - x^2 = 1 - \frac{8 - 4\sqrt{3}}{16} = \frac{16 - (8 - 4\sqrt{3})}{16} = \frac{8 + 4\sqrt{3}}{16} = \frac{2 + \sqrt{3}}{4}. \] Similarly for \( y \): \[ y^2 = \left(\frac{1}{4}(\sqrt{6} + \sqrt{2})\right)^2 = \frac{1}{16}(6 + 2\sqrt{12} + 2) = \frac{1}{16}(8 + 4\sqrt{3}), \] \[ 1 - y^2 = 1 - \frac{8 + 4\sqrt{3}}{16} = \frac{16 - (8 + 4\sqrt{3})}{16} = \frac{8 - 4\sqrt{3}}{16} = \frac{2 - \sqrt{3}}{4}. \] ### Step 4: Calculate \( \sqrt{(1-x^2)(1-y^2)} \) Now we calculate \( \sqrt{(1-x^2)(1-y^2)} \): \[ (1-x^2)(1-y^2) = \left(\frac{2 + \sqrt{3}}{4}\right) \left(\frac{2 - \sqrt{3}}{4}\right) = \frac{(2+\sqrt{3})(2-\sqrt{3})}{16} = \frac{4 - 3}{16} = \frac{1}{16}. \] Thus, \[ \sqrt{(1-x^2)(1-y^2)} = \frac{1}{4}. \] ### Step 5: Combine results Now we combine the results: \[ \cos^{-1} \left( \frac{1}{4} \right) + \frac{1}{4} = \cos^{-1} \left( \frac{1}{4} + \frac{1}{4} \right) = \cos^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{3}. \] ### Step 6: Final calculation Now we substitute back into the original expression: \[ 4 \cos \left( \frac{\pi}{3} \right) = 4 \cdot \frac{1}{2} = 2. \] Thus, the final answer is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the principal value of: cos^(-1)(-1/(sqrt(2)))

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

Find the principal value of cos^(-1)(1/sqrt2) .

Find the value of sqrt(1-cos^(2)A) .

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec^-1sqrt2)

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the principal values of cos^(-1)((sqrt(3))/2) and cos^(-1)(-1/2)

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is