Home
Class 12
MATHS
Suppose 3 sin ^(-1) ( log (2) x ) + cos...

Suppose ` 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6`, then the value of ` x^(-2) + y^(-2)` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the two equations provided: 1. \( 3 \sin^{-1}(\log_2 x) + \cos^{-1}(\log_2 y) = \frac{\pi}{2} \) 2. \( \sin^{-1}(\log_2 x) + 2 \cos^{-1}(\log_2 y) = \frac{11\pi}{6} \) Let's denote: - \( p = \sin^{-1}(\log_2 x) \) - \( q = \cos^{-1}(\log_2 y) \) Now we can rewrite the equations in terms of \( p \) and \( q \): 1. \( 3p + q = \frac{\pi}{2} \) (Equation 1) 2. \( p + 2q = \frac{11\pi}{6} \) (Equation 2) ### Step 1: Solve for \( p \) and \( q \) From Equation 1, we can express \( q \) in terms of \( p \): \[ q = \frac{\pi}{2} - 3p \] ### Step 2: Substitute \( q \) into Equation 2 Now substitute \( q \) into Equation 2: \[ p + 2\left(\frac{\pi}{2} - 3p\right) = \frac{11\pi}{6} \] ### Step 3: Simplify the equation Expanding this gives: \[ p + \pi - 6p = \frac{11\pi}{6} \] Combining like terms results in: \[ -5p + \pi = \frac{11\pi}{6} \] ### Step 4: Isolate \( p \) To isolate \( p \), we can rearrange the equation: \[ -5p = \frac{11\pi}{6} - \pi \] Converting \( \pi \) to sixths: \[ -5p = \frac{11\pi}{6} - \frac{6\pi}{6} = \frac{5\pi}{6} \] Dividing both sides by -5 gives: \[ p = -\frac{\pi}{6} \] ### Step 5: Find \( q \) Now substitute \( p \) back into the expression for \( q \): \[ q = \frac{\pi}{2} - 3\left(-\frac{\pi}{6}\right) \] Calculating gives: \[ q = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Step 6: Find \( \log_2 x \) and \( \log_2 y \) Now we have: - \( p = \sin^{-1}(\log_2 x) = -\frac{\pi}{6} \) - \( q = \cos^{-1}(\log_2 y) = \pi \) From \( p \): \[ \log_2 x = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \] Thus, \[ x = 2^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} \] From \( q \): \[ \log_2 y = \cos(\pi) = -1 \] Thus, \[ y = 2^{-1} = \frac{1}{2} \] ### Step 7: Calculate \( x^{-2} + y^{-2} \) Now we need to find: \[ x^{-2} + y^{-2} \] Calculating \( x^{-2} \) and \( y^{-2} \): \[ x^{-2} = \left(\frac{1}{\sqrt{2}}\right)^{-2} = 2 \] \[ y^{-2} = \left(\frac{1}{2}\right)^{-2} = 4 \] Thus, \[ x^{-2} + y^{-2} = 2 + 4 = 6 \] ### Final Answer The value of \( x^{-2} + y^{-2} \) is \( \boxed{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1) , then the value of (log 3 - log 2)//(x-y) is

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then