Home
Class 12
MATHS
If alpha and beta are the roots of the e...

If `alpha and beta` are the roots of the equation `x^2 + 5x-49=0`, then find the value of `cot(cot^-1 alpha + cot^-1 beta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot(\cot^{-1} \alpha + \cot^{-1} \beta) \), where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 + 5x - 49 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( x^2 + 5x - 49 = 0 \): - \( a = 1 \) - \( b = 5 \) - \( c = -49 \) Calculating the discriminant: \[ b^2 - 4ac = 5^2 - 4 \cdot 1 \cdot (-49) = 25 + 196 = 221 \] Now, substituting into the quadratic formula: \[ x = \frac{-5 \pm \sqrt{221}}{2} \] Thus, the roots are: \[ \alpha = \frac{-5 + \sqrt{221}}{2}, \quad \beta = \frac{-5 - \sqrt{221}}{2} \] ### Step 2: Use the cotangent addition formula We need to find \( \cot(\cot^{-1} \alpha + \cot^{-1} \beta) \). We can use the formula: \[ \cot(A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \] Here, \( A = \cot^{-1} \alpha \) and \( B = \cot^{-1} \beta \). Thus: \[ \cot A = \alpha, \quad \cot B = \beta \] Substituting into the formula: \[ \cot(\cot^{-1} \alpha + \cot^{-1} \beta) = \frac{\alpha \beta - 1}{\alpha + \beta} \] ### Step 3: Calculate \( \alpha + \beta \) and \( \alpha \beta \) From Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = -5 \) - The product of the roots \( \alpha \beta = \frac{c}{a} = -49 \) ### Step 4: Substitute the values into the cotangent formula Now substituting \( \alpha + \beta \) and \( \alpha \beta \) into the cotangent formula: \[ \cot(\cot^{-1} \alpha + \cot^{-1} \beta) = \frac{-49 - 1}{-5} = \frac{-50}{-5} = 10 \] ### Final Answer Thus, the value of \( \cot(\cot^{-1} \alpha + \cot^{-1} \beta) \) is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha,beta are the roots of the equation x^2-4x+1=0, then Find the value of: 1- alpha^2+beta^2 , 2- alpha^3+beta^3 , 3- |alpha-beta| , 4- 1/alpha+1/beta