Home
Class 12
MATHS
If x and y are positive integer satisfyi...

If x and y are positive integer satisfying `tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7)`, then the number of ordered pairs of (x,y) is

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

If x gt y gt 0 , then find the value of tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=